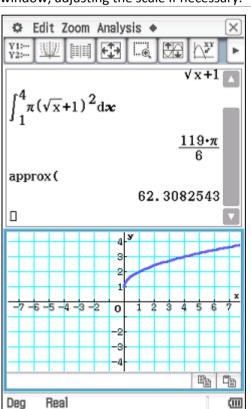
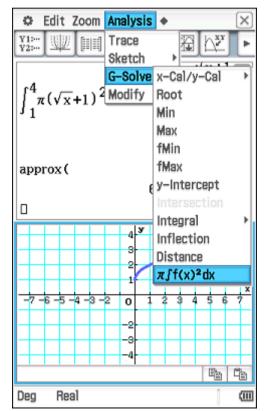
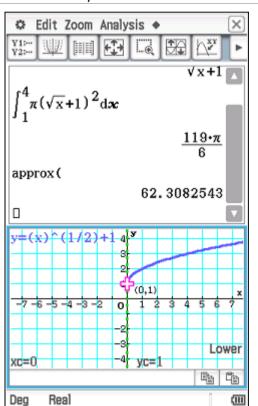
Find the volume of revolution when $1+\sqrt{x}$ is rotated about the x-axis between $1 \le x \le 4$.


Enter the function and tap EXE.

Edit Action Interactive Idx Simp Idx $1+\sqrt{2c}$ $\sqrt{x}+1$ Math1 Line **√**■ π Math2 e log∎□ ln Math3 X2 X^{-1} log₁₀(II) solve(Trig toDMS {} () sin cos tan abc 晶 EXE ans ₹ Alg Standard Real Deg \square Next set up and evaluate the volume integral in Main.

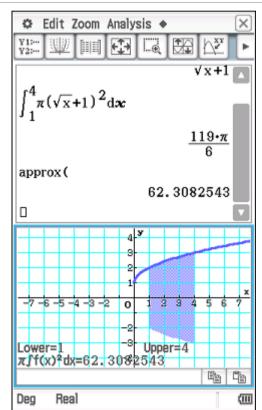

Exact and approximate values have been evaluated.

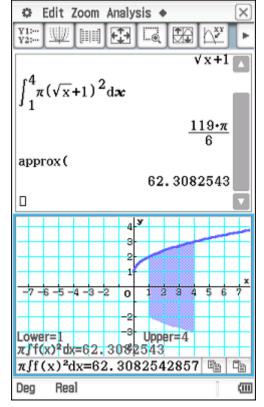
Open a graph window, select the function and drag into the graph window, adjusting the scale if necessary.



Tap Analysis, G-Solve, $\pi \int f(x)^2 dx$.

ClassPad is waiting for the lower bound of the volume of revolution.


Press the 1 key.


A window opens.

Complete the entries for the Lower and Upper limits for the volume of revolution and tap **OK**.

C Edit Zoom Analysis + Enter Value Lower: 1 Upper: 4 OK Cancel Math1 **√**■ Line π Math2 e **V** log∎□ ln Math3 X2 log₁₀(II) solve(Trig toDMS {} () Var \sin COS tan abc 酯 9 EXE ans w Deg Real (111) The volume of revolution is displayed graphically and a volume is shown at the bottom of the screen.

Tap on the volume to place it into the information bar.

