

Casio ClassPad 400 calculator companion for general maths 3

gary anderson

CONTENTS

some basics	4
	4
application menu some arithmetic	4 4
clear screen & clear all variables	5
some maintenance hints	5
BIVARIATE DATA ANALYSIS	
sketch graph of a straight line	5
line between two points	6
intersection of two lines	7
scatter plots and lines of best fit	8
graphical predictions using G-Solve- interpolation and extrapolation	9
'solve numerically' CAS function	10
residual analysis	11
TRIGONOMETRY	
finding a side case	12
finding an angle case	13
great circle distances	13
SEQUENCES & SERIES	
the arithmetic sequence	14
the geometric sequence	16
growth and decay- arithmetic sequence graphs	18
growth and decay- geometric sequence graphs	19
difference equations	20
FINANCE	
days between dates	21
simple interest	22
compound interest	23
depreciation inflation	24 25
เกทสนอก annuities in advance	25 26
annuities in advance annuities in arrears	26 27
effective and nominal interest rates	28
onconvo ana nominar interest rates	20

Thanks are extended to John Short his work in the preparation of this booklet and to the late Dave Rush for the initial work that he did in instigating the calculator companions.

ClassPad 400 calculator companion for general maths-foundation 2 is copyright $\ \ \,$ 2014 by Gary Anderson.

Permission is given to reproduce this booklet for schools use during the years 2014 to 2019 under the condition that it must not be sold for money.

SOME BASICS

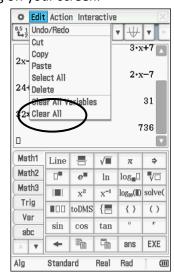
At first glance there doesn't seem to be a lot to your calculator! But, there are many more functions that you can access with the stylus on the screen. You can make this calculator as 'basic' as you like or as 'complicated' as you like!

MENU BB

Screens that you will mainly use in this course are:

- Main used for 'regular' maths and for bringing in various Action and Interactive options.
- Graphs and tables where the function is given.
- Statistics find lines of best fit for given data work in data analysis.
- Number Solver obtain the value of a variable in an equation without simplifying or transposing.
- Financial simple interest and compound interest.
- Sequence Explicit (arithmetic and geometric sequences)
 Recursive (difference equations)

You will need to use the select button to get all menu items!



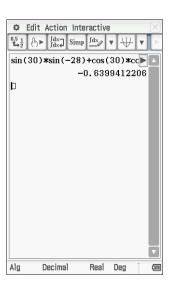
CLEARING THE MAIN SCREEN

When you have a cluttered or full screen or need to clear something off your screen.

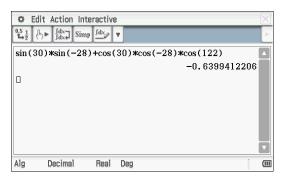
Edit..clear all OK

OTHER THINGS

There will be many shortcuts and variations that you will learn about as you use this calculator. There are also a number of ways of doing the same thing as well!


The Edit.. Undo is very handy and you may become expert at 'Clicking and Dragging'!

When you have a cluttered or full screen or need to clear something off your screen.


Edit..clear all OK

Rotate Option - Main Screen ONLY

When entering a large amount of information on the main screen, the Rotate facility can be very handy

SOME MAINTENANCE TIPS

Keep an eye on the battery indicator and change your batteries when the battery indicator is on one bar.

If you lose your stylus, a used up (empty) ball point pen can be used instead. Avoid using a working pen!

BIVARIATE DATA ANALYSIS

SKETCH GRAPH OF A STRAIGHT LINE

Prepare a screen plot of the function

Prepare a screen plot of the function y = 3x + 5 and find the x and y intercepts

Menu..Graph and Table

y1 = 3x + 5 EXE

To graph $\boxed{\Downarrow}$

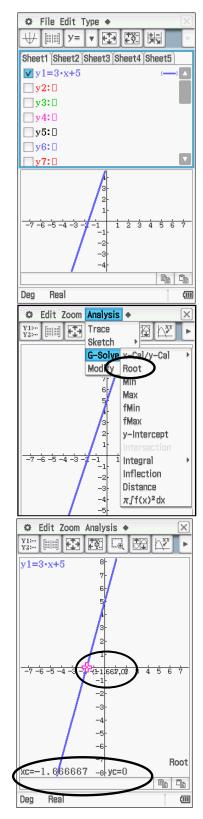
(If you can't see the graph, try Zoom.Quick Standard or Zoom..Auto)

To resize the graph ☐♣Ⅲ

In order to trace along the graph and find the y-intercept

Analysis... trace

0 OK


y-intercept (0, 5)

(Other points can be found entering an x value and **EXE**)

To find the x- intercept

Analysis..G-Solve..Root

x-intercept (-1.67, 0)

LINE BETWEEN TWO POINTS

Find the equation of the line that passes through the points (-1, 4) and (4, 14)

Menu.. Statistics

Enter the x-values into list 1 and the y-values into list 2

Set up graph settings

SetGraph.... Setting...

For Statgraph 1

Check the settings are/ or change to:

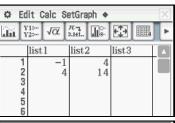
Type: Scatter XList: list 1 YList: list 2 Freq: 1

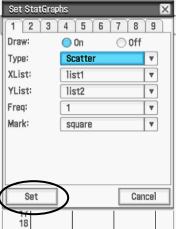
Mark: Square

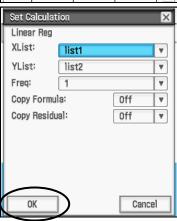
Set

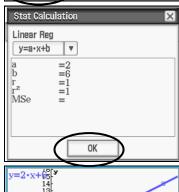
(To see the two points on the graph iii)

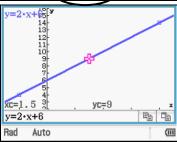
To find the function, click on the graph


Calc...Regression...Linear Reg...OK


Answer: y = 2x + 6


OK to see the graph


To see the equation on the graph (Analysis..Trace)


NOTE: The Trace button can also be used to values of 'y given x'.

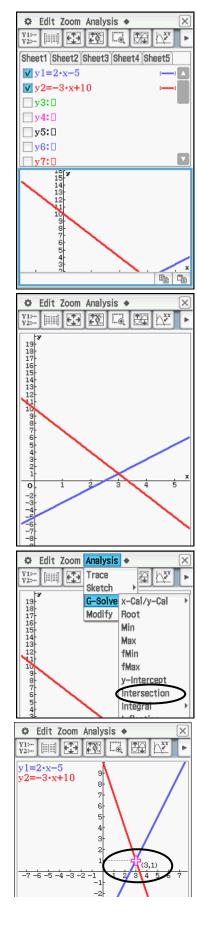
INTERSECTION OF TWO LINES

Find the point of intersection of y = 2x - 5 and y = -3x + 10Menu.. Graph and Table

Enter the two equations

$$y1 = 2x - 5$$

 $y2 = -3x + 10$


To see the graph $\boxed{\Downarrow}$

to resize the graph.

(If necessary, you can move the graph with your stylus or adjust Zoom Window , or use Zoom....Auto).

To find the intersection point

Analysis..G-solve..intersection

Answer: The graphs intersect at (3, 1)

SCATTER PLOTS & LINES OF BEST FIT

A business man records the daily temperature and the number of cans of soft drink that his vending machine sells over an 8 day period.

Daily Temp (°C)	20	22	10	8	25	27	21	12
No. of cans sold)	82	120	60	45	130	120	110	74

Plot a scatter plot of the data on your calculator and find the equation to the line of best fit.

Menu.. statistics

Enter the x-values into list 1 and the y-values into list 2

(Edit.. Clear All if data there already)

Set up your graph settings

SetGraph.... Setting...

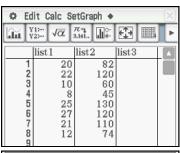
For Statgraph 1

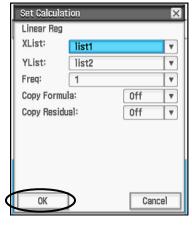
Check the settings are/ or change to:

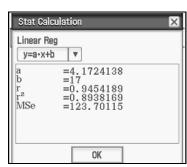
Type: Scatter XList: list 1 YList: list 2 Freg: 1

Mark: Square

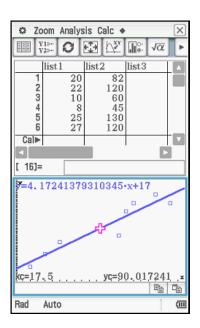
Set


To find the function, click on the graph


Calc...Regression...Linear Reg...OK


Answer: y = 4.17x + 17 or N = 4.17T + 17

(Correlation coefficient, r, = 0.9454. Coefficient of determination, $r^2 = 0.8935$ - consult your compendium for information on these.)



OK to see the graph

To see the equation on the graph Analysis..Trace

Note: You can move between the points and the line using 🔻

GRAPHICAL PREDICTIONS USING G-SOLVE - INTERPOLATION & EXTRAPOLATION

Graphical predictions can be made by entering the function into Graph and Table 🛅 , then using Gsolve, x-Cal or y-Cal

For the cans of soft drink example, predict the number of cans sold if the temperature was 17 °C.

Menu.. Graph and Table

Enter the function

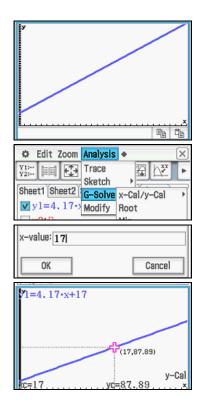
y1 = 4.17x + 17

To see the graph $|\Psi|$

C Edit Zoom Analysis . Sheet1 | Sheet2 | Sheet3 | Sheet4 | Sheet5 √ y1=4.17•x+17 __y2:□ gy3:□ __y4:□ __ y5: [ge:□ y7:

View Window File Memory x-log y-log xmin : 0 max :30 scale: 1 dot : 0.0487012987012987 ymin :0 max : 140 Default OK Cancel

To use y-Cal for an x-value of 17, this value must be on the screen. Either zoom out or change the view window [43] to include this xvalue


(Example: 0, 30, 1, 0, 140, 1 and OK)

With the graph displayed

Analysis..G-solve..y-Cal

x-value: 17 OK

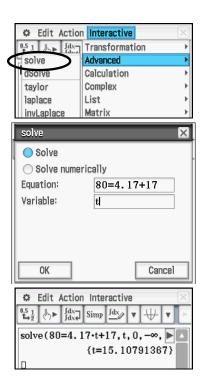
Answer: Approximately 88 cans of soft drink will be sold

'SOLVE NUMERICALLY' CAS FUNCTION

Another way of solving equations is to use the CAS solve function on your calculator.

Example: Predict the temperature when 80 cans of soft drink are sold.

Main √α


Interactive..Advanced...solve

Select Solve numerically

Enter the equation 80 = 4.17t + 17 use **abc** to enter t and make the variable t OK..OK

Answer: The temperature is approximately 15 $^{\circ}\text{C}$ when 80 cans are sold.

Consult your compendium to help comment on the reliability of these predictions.

RESIDUAL ANALYSIS

Prepare a plot of residuals for the 'drinking vending machine' data.

Daily Temp (°C)	20	22	10	8	25	27	21	12
No. of cans sold)	82	120	60	45	130	120	110	74

If required, re-enter the data into Statistics , list1 and list2.

Menu.. statistics

Enter the x-values into list 1 and the y-values into list 2

(Edit.. Clear All if data there already)

Calc..Regression..Linear Reg

Copy Formula: y1 Copy Residual: list 3

(use the pull down arrows to do this)

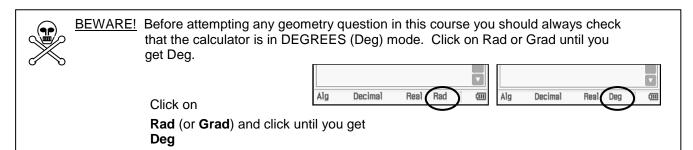
OK..OK

Click into the table screen and select

SetGraph..Setting

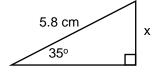
Change YList to list3

Set


Click on the graph icon

Click on the graph

Analysis...Trace ▼ and cursor along to find the values of the residuals


TRIGONOMETRY

FINDING A SIDE CASE

Use trigonometry to find x.

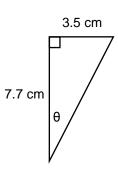
$$\sin 35 = \frac{x}{5.8}$$
$$x = 5.8 \times \sin 35$$

Main √α

 $5.8 \times \text{Keyboard} \text{TRIG} \sin 35$

EXE

C Edit Action Interactive $0.5 \atop \begin{array}{c} 1 \\ \begin{array}{c} 1 \\ \end{array}$ 5.8×sin(35 3.326743331 Math1 Line 름 √**I** π **\$** Math2 tan 00 Math3 sin-1 tan-1 θ COS-1 ŧ Trig sinh cosh tanh Var cosh-1 tanh-1 1 4 EXE ans Alg Decimal Real


Answer: x = 3.32

(If you got 3.03, your calculator was on Grad and if you got 2.48 your calculator Rad(ians))

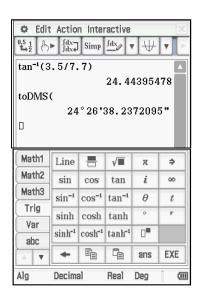
FINDING AN ANGLE CASE

Find θ

$$\tan\theta = \frac{3.5}{7.7}$$

Main √α

[Keyboard] [TRIG] $tan^{-1} 3.5 \div 7.7$

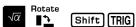

EXE

Answer: $\theta = 24.44^{\circ}$

To change answer to DMS

Math1 toDMS EXE

 $\theta = 24^{\circ} \, 27^{'}$

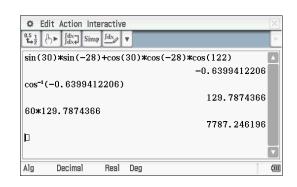


GREAT CIRCLE DISTANCES

When entering the great circle $\cos \theta$ formula on the main screen, the rotate facility enables you to see all of your calculator entries.

Find the distance in nautical miles between Cairo (30°N, 31°E) and Brisbane (28°S, 153°E).

 $\cos \theta = \sin(\text{lat P}) \sin(\text{lat Q}) + \cos(\text{lat P}) \cos(\text{lat Q}) \cos(\text{long diff})$ $\cos \theta = \sin(30) \sin(-28) + \cos(30) \cos(-28) \cos(122)$


 $\sin (30) \times \sin (-28) + \cos (30) \times \cos (-28) \times \cos (122)$ **EXE**

= -0.6399

Math1 $\cos^{-1} \theta$ $\theta = 129.7874366$

 $D = 60 \theta$

 60×129.784366 **EXE** Answer: D = 7787 NM

SEQUENCES AND SERIES

THE ARITHMETIC SEQUENCE

For the sequence 5, 9, 13, 17,

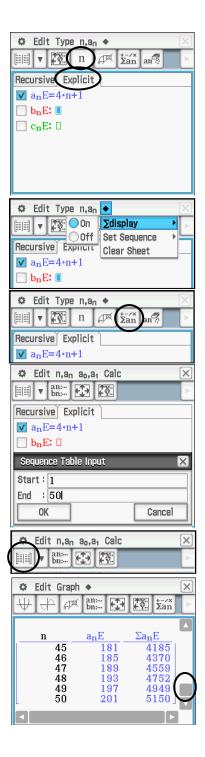
- (a) Generate the first 50 terms of the sequence.
- (b) Find the sum of this sequence to 20 terms.
- (a) a = 5 and d = 4 Sequence rule: $T_n = a + (n-1)d$ $T_n = 5 + (n-1)4$ $T_n = 4n + 1$

Menu.. Sequence

Select Explicit

Enter the rule $T_n = 4n + 1$ (use n button)

Select the diamond icon ◆
To show the sum display


Sdisplay on

To see the first 50 terms of the sequence Select $\frac{1}{\sum_{n=1}^{\infty}}$

On new menu bar select Sequence Table Input

Start: 1 End: 50 OK

(b) Select to see the sequence and the sum to n
 Use the right slider bar or to get to the sum of the first 50 terms =
 Sum of the first 20 terms = 860

THE ARITHMETIC SEQUENCE

The 12th term of an arithmetic sequence is 28. The 18th term is 46. Find the 31st term.

$$T_{12} = a + 11d = 28$$

 $T_{17} = a + 17d = 46$

Menu...Main √α

Keyboard Math1

abc

Enter a + 11d = 28

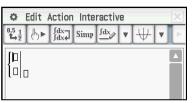
▼

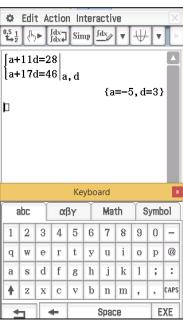
Enter a + 17d = 46

•

a,d EXE

a = -5 and d = 3


$$T_n = -5 + (n-1) 3$$


$$T_n = 3n - 8$$

The 31st term can then be found

$$T_{31} = 3n - 8 = -31 \times 3 - 8$$

$$T_{31} = 85$$

THE GEOMETRIC SEQUENCE

For the sequence 5, 15, 45, 135,.....

- (a) Find the rule of the sequence.
- (b) Use the rule to find the 10th term of the sequence.
- (c) Find the sum of this sequence to 10 terms.
- (a) $\frac{T_2}{T_1} = \frac{15}{5} = 3$: r=3

Sequence rule: $T_n = 5 \times 3^{(n-1)}$

(b) Menu.. Sequence

Select Explicit

Enter the rule $T_n = 5 \times 3^{(n-1)}$ (use n button)

Select the diamond icon ◆

To show the sum display

 Σ display on

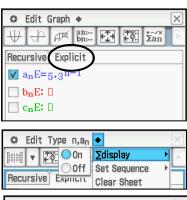
To see the first 50 terms of the sequence

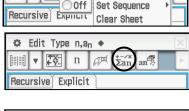
Select zan

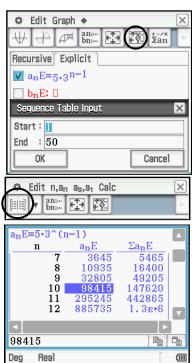
On new menu bar select

Sequence Table Input

Start: 1


End: 50 OK


(make sure the difference equation is ticked)


(b) Select to see the sequence and the sum to n
 Use the right slider bar or to get to the sum of the first 50 terms

The 10^{th} term is 98 415

(c) Sum of the first 10 terms = 147 620

THE GEOMETRIC SEQUENCE

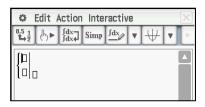
The fourth term of a geometric 192. The 8th term is 49 152. Find the 10th term.

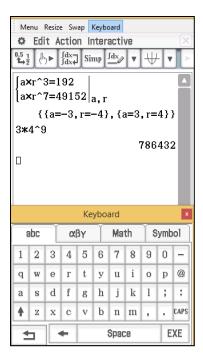
$$T_4 = ar^3 = 192$$

 $T_8 = ar^7 = 49 152$

Enter a x r ^ 3 = 192

Enter a x r ^ 7 = 49152


a,r EXE


$$a = 3$$
 and $r = 4$

$$T_n = 3 \times (4)^{n-1}$$

The 10th term can then be found

$$T_{10} = 3 \times (4)^9$$

 $T_{10} = 3 \times 4 \wedge 9$
 $T_{10} = 786 \cdot 432$

GROWTH AND DECAY

ARITHMETIC SEQUENCE GRAPHS

Plot a graph for the first 10 terms of the arithmetic sequence: $T_n = 30 + (n - 1)5$

Menu.. Sequence

Select Explicit

Enter the rule 30 + (n - 1)5

To see the first 10 terms of the sequence

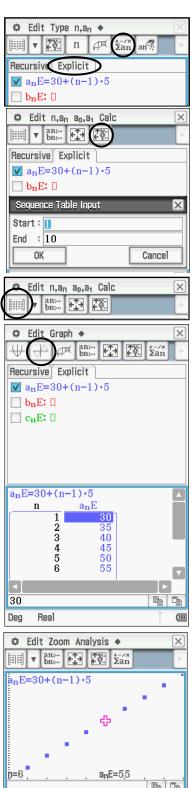
Select Fan

On new menu bar select E

Sequence Table Input

Start: 1

End: 10 OK


(make sure the difference equation is ticked)

Select | to see the sequence

Whilst in the sequence window, select |+

Zoom.. Auto if the points are not on the screen.

Analysis...Trace along the points as required.

GROWTH AND DECAY

GEOMETRIC SEQUENCE GRAPHS

Plot a graph for the first 6 terms of the arithmetic sequence: $T_n = 10 (1.6)^{n-1}$

Menu.. Sequence

Select Explicit

Enter the rule $10 \times 1.6^{(n-1)}$

To see the first 6 terms of the sequence

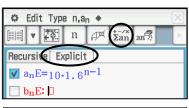
Select zan

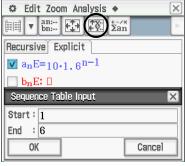
On new menu bar select

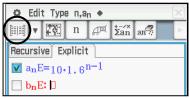
Sequence Table Input

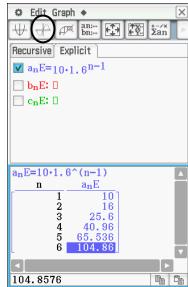
Start: 1

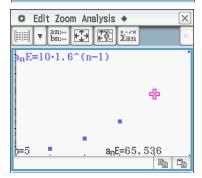
End: 6 OK


(make sure the difference equation is ticked)


Select to see the sequence


Whilst in the sequence window, select


Zoom.. Auto if the points are not on the screen.


Analysis...Trace along the points as required.

DIFFERENCE EQUATIONS

(a) Generate the first six terms of the sequence, $T_{n+1} = T_n + 3$, where $T_0 = 4$

Menu.. Sequence Select Recursive and $\frac{n+1}{a_0}$.

Enter the rule $a_{n+1} = a_n + 3$ $a_0 = 4$

To see the first 6 terms of the sequence

Select zan

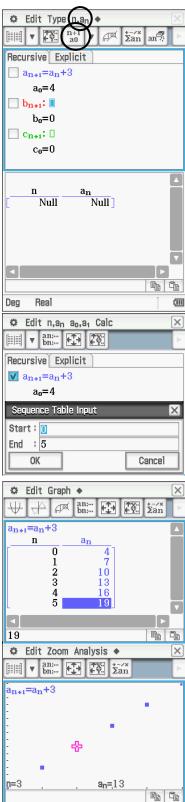
On new menu bar select

Sequence Table Input

Start: 0

End: 5 OK

(make sure the difference equation is ticked)


Select to see the sequence

(b) Graph the first six terms of this sequence.

Whilst in the sequence window, select

Zoom.. Auto if the points are not on the screen.

Analysis...Trace along the points as required.

FINANCE

BEWARE!

The calculator's default is for 360 days in a year. Before starting any simple interest calculations you MUST change this to **365 days**.

This can done by simply clicking on the number of days that appears on the bottom of the screen.

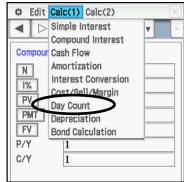
DAYS BETWEEN DATES

Find the number of days between April 15th and August 2nd 2014

Menu..Financial

Calc(1)..Day Count

Enter dates in format mm/ dd/ yyyy


d1 4/15/2014

d2 8/2/2014

Make sure that you have 365 days in the year!

Days

Answer: 109 days

SIMPLE INTEREST

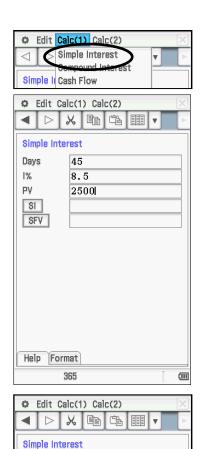
\$2 500 is invested at 8.5% pa interest for 45 days. Find:

- (a) The amount of interest earned.
- (b) The total in value of the investment.

Menu..Financial

Calc(1)...Simple Interest

Set:


Days: 45 I%: 8.5 I%: 9 PV: 2500

SI for simple interest

SFV for total of investment

Check that 365 days is being used!

- (a) SI = \$26.20
- (b) SFV = total amount in account = 2526.20

45

1%

8.5

2500

-26.19863014

-2526.19863

COMPOUND INTEREST

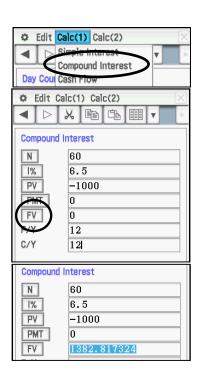
COMPOUND INTEREST (FIND A)

Find the amount in the account if \$ 1 000 is invested for 5 years at an annual rate of interest of 6.5% with interest added every month.

Menu..Financial

Calc(1)...Compound interest

Check that 365 days is being used!


Set:

N: 5 × 12 I%: 6.5

PV: (—) 1 000 PMT: 0 FV: set as 0 P/Y: 12 C/Y: 12

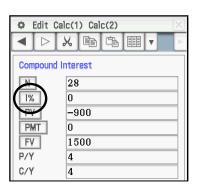
Click on FV

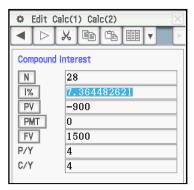
Answer \$1 382.82 will be in the account after 5 years.

COMPOUND INTEREST (FIND I)

At what annual interest rate, compounded quarterly will a principal of \$900 grow into \$1 500 over 7 years?

Menu..Financial


Calc (1)...Compound interest


Set:

N: 7 × 4 I%: set as 0 PV: (—) 900 PMT: 0 FV: 1 500 P/Y: 4 C/Y: 4

Click on I

Answer: I% = 7.36 p.a.

DEPRECIATION (REDUCING BALANCE) (FIND V (FV))

The Financial Solver can be used to work examples of reducing balance depreciation. Remember to enter both the interest rate and the present value of the item as negatives.

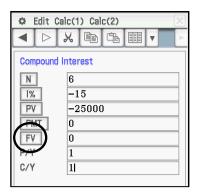
Find the value of a \$25 000 vehicle after 6 years of depreciation at an annual rate of 15%.

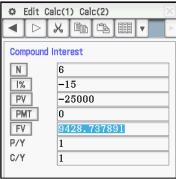
Menu..Financial

Calc(1)...Compound interest

Set:

N: 6


l%: (--) 15


PV: (-) 25 000

PMT: 0 FV: set as 0 P/Y: 1 C/Y: 1

Click on FV

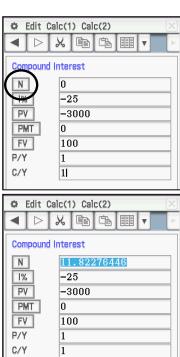
Answer: Value of vehicle will be \$9 428.74

DEPRECIATION (REDUCING BALANCE) (FIND n)

How long would it take for a \$3 000 item to depreciate to value \$100 at 25% pa depreciation (based on reduced balance)?

Menu..Financial

Calc(1)...Compound interest


Set:

N: set as 0 I%: —) 25 PV: —) 3 000 PMT: 0

FV: 100 P/Y: 1 C/Y: 1

Click on N

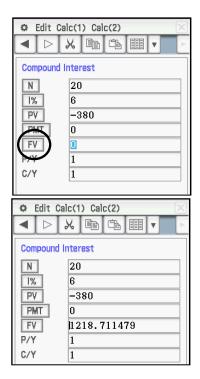
Answer: The time to reach this figure will be 11.82 years or approximately 12 years.

INFLATION

Find the value of a coin collection currently valued at \$380 after 20 years of inflation at 6% pa.

Menu..Financial

Calc(1)...Compound interest


Set:

N: 20 I%: 6

PV: (—) 380 PMT: 0 FV: set as 0 P/Y: 1 C/Y: 1

Click on FV

Answer: The coins will be worth \$1 218.71

ANNUITIES IN ADVANCE (FIND F)

Brian deposits \$ 500 every quarter into an account which pays 14 % p.a. (nominal) compound interest adjusted quarterly. How much has he saved over an 18 month period? (i.e. 6 periods)

We use the Financial Solver for annuities. In this case we have a regular installment of - \$500.

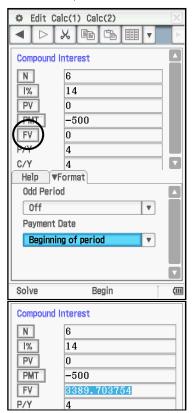
Menu..Financial

Calc(1)...Compound interest

Set:

N: 6 I%: 14 PV: 0

PMT: (-) 500 FV: set as 0 P/Y: 4 C/Y: 4


Set:

Odd period: Off

Payment period: Beginning of period

Click on FV

Answer: He has saved up \$ 3 389.70

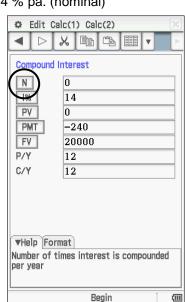
ANNUITIES IN ADVANCE (FIND N)

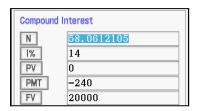
Janice wishes to save \$ 20 000 so that she has a deposit that she can use when purchasing a home. She deposits \$ 240 into an account every month, into an account which pays 14 % pa. (nominal)

adjusted monthly. How long will it take her to reach her savings target?

Menu..Financial Calc(1)...Compound interest

Set:


N: set as 0 I%: 14 PV: 0


PMT: (--) 240 FV: 20 000 P/Y: 12 C/Y: 12

Set: Odd period: **Off** Payment period: **Beginning** of period

Click on N

Answer: N = 58.06 or 4 years and 10.06 months.

ANNUITIES IN ARREARS (LOANS - FIND R AND P)

A personal loan of \$25 000 is repaid over 20 years in fortnightly installments at an annual interest rate of 13 %. Find:

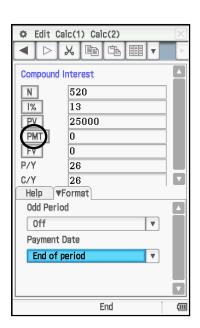
- (a) The size of the repayments.
- (b) How much was owed after making 4 years of repayments.

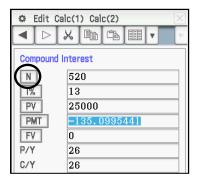
Menu..Financial

Calc(1)...Compound interest

Set:

N: 20 x 26 I%: 13 PV: 25 000 PMT: set as 0

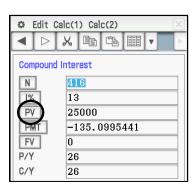

FV: 0 P/Y: 26 C/Y: 26

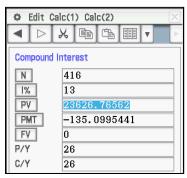

Set: Odd period: Off

Payment period: End of period

Click on PMT

Answer: (a) Repayment = \$135.10





(b) Keep the screen as it was from (a) and change N to show the number of repayments LEFT to go with 20 - 4 = 16 years to go.

RESET N as $16 \times 26 = 416$ payments remaining

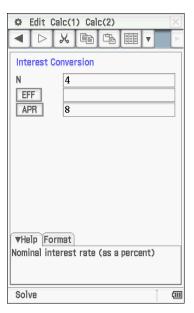
Click on PV

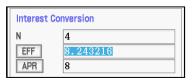
EFFECTIVE AND NONIMAL INTEREST RATES

EFFECTIVE INTEREST RATES

Find the effective annual interest rate on an account which pays 8% pa annually compounded quarterly.

Menu..Financial


Calc(1)....interest conversion


EFF is the Effective interest rate as a % and APR is the Nominal interest rate as a %.

Set:

N: 4
APR: 8

Click on EFF

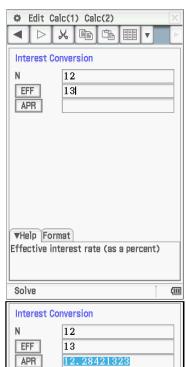
Effective annual interest rate is 8.24%

NOMINAL INTEREST RATES

Find the nominal interest per month on an account which offers an annual effective rate of 13% (compounded monthly).

(compounded monthly).

Menu..Financial


Calc(1)...Compound interest..Interest conversion

Set:

N: 12 EFF: 13

Click on APR

Nominal interest rate is 12.28%

