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Using this resource.

This resource is not a text book.

It contains material that is hoped will be covered as a dialogue between students
and teacher and/or students and students.

You, as a feacher, must plan carefully ‘your performance’. The inclusion of all the
‘stuff’ is to support:

e you (the teacher) in how to plan your performance — what questions to ask,
when and so on,

e the student that may be absent,

e parents or futors who may be unfamiliar with the way in which this approach
unfolds.

Professional development sessions in how to deliver this approach are available.
Please contact

The Noel Baker Centre for School Mathematics
Prince Alfred College,

PO Box 571 Kent Town, South Australia, 5071
Ph. +61 8 8334 1807

Email: aharradine@pac.edu.au
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1. Stenduser: s it really as BIG as it can be¢

1.1  Alittle bit of paper folding

Take a 10 cm square piece of paper (yellow would be nice).
Fold the top left hand corner so that its edges are parallel to
the sides of the original square. You need not fold in the exact

position shown.

Now fold this corner back, and make a second fold, from the
fop of the first fold to the bottom right hand corner of the

square.

Folding back this second fold should result in a square that is
divided by two fold lines info a quadrilateral and two

right-angled friangles.
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1.2 Investigating areas. H E
1. If the 10 cm square in question is labelled as
shown right, explain how you would find the area
of the quadrilateral PQCD.
1] C
2. Imagine that the paper folding activity was repeated 10 fimes with differing

positions of point Q. Copy and complete the following table to investigate the

affect that this variation has on the area of the quadrilateral PQCD.

Distance AQ Distance BQ Area APAQ Area AQBC

Area of PQCD

0cm 10 cm 0 cm? 50 cm?

50 cm?

1 cm

2cm

3cm

4cm

5cm

6cm

7 cm

8cm

9cm

10cm

3. Using the values in the above table as a starfing point, draw an accurate

graph of the area of PQCD against the distance AQ.

4, Describe what your graph illustrates about the variation in the area of PQCD

as AQ varies.

5. What do you think is the maximum area of PQCD and the corresponding

length of AQ?

6. What do you think is the minimum area of PQCD and the corresponding

length(s) of AQ?
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1.3 Capturing the infinite ...

Open the Geometry file entitled 0OPTRQUAD on your CASIO 9860G AU. @ﬁ‘j—ﬂmﬁum
GRAFPH |DHA TxFlBLEI RECUR

Al U e,
Run the animation that has been built into this geometric construction.  ZE frer L

16.1
1. How many quadrilaterals PQCD are possible?
2. The variation in what quantity determines PQCD and its area?
If we define x as a variable representing all of the possible values of length AQ,
3. What range of values can x take? H n =2 B
4, Write down an expression, in terms of x,
for the area of AAQP. i
0 cm
5. COE and complete i table,
Distance AQ Distance BQ
lcm 10-1=9cm 1
2cm 10-2=8cm o 10 crin
3cm
4cm
5cm
xcm
6. Use this expression for BQ fo write down an expression for the area of AQBC in
terms of x.
7. Using your previous answers, write down an expression for the area of
quadrilateral PQCD in terms of x.
1
8. Find the values of x that satisfy the equation —Exz +5x+50=50.
9. Explain the significance of the equation and the resultant solutions in part 8.
10. Prove that the value you conjectured to be the maximum area of PQCD
(in section 1.2 part 5) is, in fact, as big as the quadrilateral can bel
1. Find the maximum area of PQCD if this paper folding activity were undertaken
using a square of side length a units.!
12. Find the maximum area of PQCD if this paper folding activity were undertaken

using a rectangular piece of paper.!

! If you cannot complete questions 10, 11 and 12 then ... you need to know more!
You will get a chance to return fo these tasks when you are better equipped
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2. Some ferminology.

To help you work and learn in this area of mathematics it is important that you

understand and are able to use correctly the following terms:

algebraic model algebraic expression equation function

In the Stenduser you derived (or developed) an algebraic model for the area of all

possible quadrilaterals PQCD (i.e. for the "general case" quadrilateral).

An algebraic model is simply a collection of pro-numerals and numbers that are

linked with desired operators (i.e. addition, multiplication etc.) and the equivalence

relationship (=) fo form an equation that describes the relationship between

associated quantities. In our case, we developed an algebraic model that described
e how the area of the quadrilateral can be calculated, and

e how the area varies as the position of Q varies (i.e. as the length AQ varies).

1
The algebraic model derived in the Stenduser was A = —5 x> +5x+50.

This is a model for the area, Ain cm?, of every quadrilateral PQCD formed by our

method of folding a 10cm x 10cm paper square.

Other names for algebraic structures like our model are rule, formula, algebraic
representation and equation. The terms rule and equation are also often used in
describing relationships in mathematics that are not trying fo model some situation

like the area of our quadrilateral.

1
The right hand side of our equation, i.e. —Exz +5x+50is called an algebraic

expression. Note that it contains no "equals sign”.

1
Clearly the algebraic model A = —5 x> +5x+50 will compute A values (output)

for any given x value (input) or, to keep it in context, will compute the area of the

quadrilateral PQCD for any given value of the length AQ.

1
In formal mathematics a rule like A = —5 x> +5x+50 that involves a value ( x) being

operated on in some way to produce a unique value (A ) is called a function.

The output value (A in this case) is normally reported with the input value ( x in this

case) as an ordered pair (x, A).
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3. Representing... H o E
The Stenduser has a geometric representation.
]
Based on this representation, our task is to find the 10 Cm
maximum area of the quadrilateral PQCD if F
Q can take any position on AB.
D10 cm ©

The Stenduser also has an algebraic representation

A:—%x2 +5x450

In this representation our task is to find the ordered pair (x, A) such that A takes its

largest possible value.

We can make a tabular representation of our Stenduser
(or any other function) by documenting some of the

ordered pairs that result from this function.

We can make a graphical representation of our Stenduser
(or any other function) by plotting some of these
ordered pairs on a Cartesian Plane where the horizontal axis

represents the input variable (i.e. x ) and the vertical axis

represents the output variable (i.e. A )

Of course, there are more ordered pairs that can be
generated by our function than those that are shown in the
table or the graph above. Putting in some "“in between”

ordered pairs gives,

Adding some more ordered pairs gives the impression of a

smooth curve.

Y1==8.,3xE+3=+20
] ¥l

i

FORM [FMP [EpIT |-con [6-FLT

"""" i ¥l
[ 507
0.5 52.315

| 5U.5
1.5 56.315

" |

| smE

A graphical representation of a function consisting of a continuous line

acknowledges that the function consists of an infinite set of ordered pairs.

Care should be taken when deciding whether to represent a function as a selection

of points or as a continuous line. Often only one will be appropriate.

© A Harradine & A Lupton Draft, Feb 2008, WIP
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4. The road to proof.

At this stage you probably think you know the maximum area of the quadrilateral
PQCD in the Stenduser. You may be right but can you be sure beyond any doubt?2

Can you prove it2

1. Use your graphic calculator to make a tabular representation and a graphical

representation of the function,
y=x"+5x-2 for —=5<x<5 andinteger values of x.

You should achieve the following

" ad

E

-5
[FORH [P [EnTT ECoH[G-FLT

2. It appears that y has a minimum value in this function. What is ite

What is the corresponding x value?

Can you be sure of your answers, beyond any doubt?

3. Describe the method you used to determine your answer to question 2.

4, For each of the following functions, determine, as best you can, whether

y has a maximum or minimum value, the actual maximum or minimum value
and the corresponding value of x.
a. y=x"+4x-2 b. y=—x>+8x-2 C. y=3x*+7x-2

d. y=x+3)*+5 e. y=-2(x-2)>-7 f. y=—(x+8)*+2

Summarise your results in a table like the following:

Max. or Min. value Corresponding

Function Maximum/Minimum of y. value of x.

y=x"+4x-2
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5. Look carefully at your table. What patterns or links do you observe?

Make conjecture(s) based on your observations.

Being sure beyond any doubt requires you to prove a statement.
Let us start with the function found in Part d of Question 4, y = (x+3)>+5.

| believe that y has a minimum value of 5 when x =-3.

To prove this | could argue as follows:

6. For each of the following functions, state whether y has a maximum or

minimum value, the actual maximum or minimum value and the

corresponding value of x. Prove each of your statements.

a.  y=(x+D>+11 b. y=(x-2)"-15 c. y=(x+12)>-9
d. y=—(x+1*+4 e. y=—(x-3)>-9 f. y=x>—6x+9
g. y=x*-14x+50 h. y=x>+6x-2
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5.  Forms of Quadratic Functions

How did you cope with Parts f, g and h of Question 62

You probably had more difficulty with these questions were in a different form to the

other parts of Question 6.

All the functions that we have been dealing with in this unit have been quadratic
functions, in one form or another. A quadratic function is one in which the highest
exponent value of the unknown to be operated on (usually x) is 2. All other exponent

values must be non-negative integers, so they must be either 1 or 0.

Therefore, all quadratic functions have the form:
y=ax>+bx+c where a, b and ¢ are constant values with a #0.

This form is called general form of the quadratic function.

So,is y=(x+1)*+11 a quadratic function?

If we expand and simplify its right-hand side we have:

Hence we can see it is a quadratic, but was presented in a different form. You should

be able to see that anything in the form
y=a(x+h)*+k

will expand to general form.

1. Expand and simplify y =a(x+ h)* +k to show it can be expressed in general
form.

2. Use expansion and simplification o express each of the following quadratic

functions in general form.
a. y=(x+3)*+2 b. y=(x-2)+1 C. y=(x=5)"=20

d. y=-(x+1)’-4 e. y=2(x-6)"=50  f. y==3(x+4)* +12

© A Harradine & A Lupton Draft, Feb 2008, WIP 1 2



6. Turning Point form.

Thinking back to our proofs of maximum or minimum values in Section 4,

the arguments were based on quadratics in the form y =a(x+ h+k.

This is often called the turning point or vertex form of the quadratic function.

The proof that y = x> +6x—2 has a minimum value of -11 when x =-3is made
possible by first changing this function from general form to tfurning point form.
To do this we have to create a square number, i.e. a term of the form (x+ h)>.

This process is called completing the square.

The square we will ‘create’ is (x+3)*, as this has the expansion (x+3)* = x* +6x+9

(and thus contains the first two of the three terms in our quadratic).

Now that we have the quadratic in turning point form we can complete the following
argument.

x> >0 forall x (as x* is a square number which are always non-negative)
= (x+3)*2>0 forall x

= (x+3)*=11=—11forall x (subtracting 11 from both sides of the inequality)
= ¥y has a minimum value of - 11.

Now the minimum occurs when (x+3)> =0, i.e. when x =-3.
<.y has a minimum value of - 11 when x =-3.

1. Change these quadratic functions from general form to turning point form

and state the maximum or minimum value and the corresponding value of x.
a. y=x"+8x-1 b. y=x"+10x+2 C. y=x"—2x+2

d. y=x"—-4x-6 e. y=x"+3x f. y=x"—-5x+40
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/.  Further Completing the Square.

Consider x* +6x+9=(x+3)> and 2x* +12x+18=2(x> +6x+9) =2(x +3)°.

This suggests that if the co-efficient of x” is not 1 then it should be factored out before
completing the square. For example,
y=3x>+5x-7
= y=3(x" +3x)=7 (Note: do not factor the constant term!)
= y=37+3x+E)-EH-7  (Asi=3+2)
= y=3(x+:F -())-7
= y=3(x+3)?-3x(3) -7

= y=3(x+3)° - (Your calculator may be helpful for this line)

The same method applies for negative and non-integer co-efficients of X2, e.g.
y=—1x"+2x-2

=>y= —%(x2 —6x)—2 (Note: do not factor the constant term!)

= y=—1(’-6x+9-9)-2 (As (=6+2)*=9)

= y=—1(x-3-9)-2

= y=—1(x-3)"-4x-9-2

=y=—1(x-3)+1

1. Change these quadratic functions from general form into turning point form.

a. y=2x"+8x—4 b. y=5x>+10x+3 C. y==2x>+6x+2
dy=-3x"-12x+1 e y=-2x"+5x-7 f. y=1x>+3x+5
g y=ix’-12x+6 h. y=—1ix+2x+2 i y=ax>+bx+c

Hint: persevere with part i, it will save a lot of time later!

2. If you have not yet done so, re-visit the Stenduser on page 7.
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8. The graphs of quadratic functions.

8.1 Symmetry

a. Describe what happens fo the values of y = x* as x goes from
0 to +oo or"positive infinity" (i.e. increasingly larger values of x ).

b. Describe what happens fo the values of y = x* as x goes from
0to —oo or"negative infinity" (i.e. increasingly smaller values of x).

C. How would these observations show themselves in the graph of y = x*
2.
a. Describe what happens to the values of y = (x—3)* as x goes from
0 to +oo or"positive infinity" (i.e. increasingly larger values of x ).
b. Describe what happens to the values of y = (x—3)* as x goes from
0to —oo or"negative infinity" (i.e. increasingly smaller values of x).
C. How would these observations show themselves in the graph of
y=(x-3)
3. Copy and complete the table of values for the two quadratics functions for
—2<x<5 and hence plot the graphs "oy hand".
X -2 -1 0 1 2 3 4 5
y=ux"
y=(x-3)
4, What might mathematicians mean when they describe quadratic functions as
"symmeftric"e

8.2 Families of Quadratic Functions

1. Use your CASIO 9860G AU to draw all of these graphs on the same axes:

2 2

yzx2 y=2x2 y=5x2 y=3x y=-3x

The set of all the possible functions of the above form is called a family of quadratic
functions. This family can be described symbolically as y = mx?, where m is an

"unknown constant" that takes different values (i.e. 1,-3,5,7.2,0...).
By taking different values m “generates” the members of the family of quadratics.

Such an unknown constant is sometimes referred to as a parameter.

Use the examples of this family that you have graphed to make a conjecture about:
i the properties the members of this family have in common;

ii. the way that members of this family differ from one another.

: MATH MEMLU e
STHT [2-ACT (S SHT

iii. whether or not there is an “odd function out” in this family Wﬁé

16.3
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N

a. Investigate these families of functions in the same fashion
. y=(x-h)’ i. y=x"+k ii. y=m(x+3)*+2
In each case choose your own specific functions to plot, but be sure to include zero

as well as some positive values and some negative values of the parameter. .

‘.

b. Summarise what you have observed about the relationship between

parameters and the corresponding families of quadratic functions.

¢4

3. Using your understanding developed in Question 2, graph these sets of

qguadratic functions on the same set of axes,

a. y=x', y=(x+4)?, y=(x+4)°’-2, y=1l(x+4’-2
b. y=x>, y=x"+1, y=—-x*+1, y=-3x"+1
c. y=x>, y=x=2), y=(x-2)"+5, y=-2(x-2)"+5

Check your graphs using your 9860.

4, Graphing some members of the family of quadratic functions
y =mx> —2mx—3m
shows a particularly obvious property. Can you explain the reason for that
property by looking at the general equation y = mx® —2mx —3m?

8.3 Find a function...

1. Find the equation of a quadratic function whose graph never cuts the x—axis.

2. Find the equation of a quadratic function whose graph cuts the x—axis just
once.

3. Find the equation of a quadratic function whose graph cuts the x—axis exactly
twice.

4, Find the equation of a quadratic function whose graph cuts the x—axis three
fimes.

5.
a. Find the equation of a quadratic function which passes through the

point (5, 13).

b. Find the equation of a quadratic function which passes through the

point (5, 13), and cuts the x-axis twice.

C. Find the equation of a quadratic function which passes through the
point (5, 13), and cuts the x-axis once.

d. Find the equation of a quadratic function which passes through the
point (5, 13), and has a maximum value of 14,
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9. So...howamlgoing...¢

These questions cover many of the ideas and techniques that have been covered in

this unit up to this point. Have a go at them to see how much you have learned.

1. Convert these quadratic functions to general form y = ax>+bx+c.

a. y=(x+7)-24 b. y==2(x-1)*+6
2. Convert these quadratic function to turning point form y =a(x+h)* +k .
a. y=x"+10x+30 b. y=4x*+12x+5
3. For the quadratic function
y=—(x— 3)* +1
a. Write down the co-ordinates of this function’s turning point
b. Hence sketch the graph of this function on a co-ordinate axes.
4, For the quadratic functions given in this table, determine.
Do they have What is the When does | How many
a maximum or | maximum / this max. / | zeros do they
Quadratic Function . . .
a minimum minimum min. value | have (do not
value? value? occur? find them)
y=(x+2)>+11
y= —5(x=3.5)"+2
5. a. Imagine that the graph of y = mx?* is drawn for a specific

positive value of m . If the value of m is doubled, describe the

effect this has on the graph
b. Imagine that the graph of y = x> +k is drawn for a specific

value of k. If the value of k is increased by 5 units, describe the

effect this has on the graph

. . 1, .
6. a. Convert the quadratic function y = —gx +2x+10 into

furning point form.

b. It has been shown that the quadratic function,
1 1
A= —5 x> +5x+50 can be written as A = _E(X -5)*+62.5.

Provide a deductive argument proving that this function has a

maximum value of A =62.5 that occurs when x=5
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7. A point P is marked on the edge AB of a 10 cm by 10 cm square ABCD.

a. If P is positioned so that AP = 4 cm (as shown) A F. E
i Write down the length of PB.
ii. Find the area of triangle APD
iii. Find the area of triangle PBC
iv. Find the sum of the areas of A APD + A PBC b T
b. Consider point P to be positioned so that AP =x cm ﬁ i FE
i Write down an expression for the length of PB.
ii. Write down an expression for the area of A APD
iii. Write down an expression for the area of A PBC
iv. Write down an expression for the sum of the =
areas of A APD + A PBC
C. What does your answer to part iv above tell you about A APD + A PBC?
Provide reasoning to support your answer
d. Is there another way to arrive at your conclusion in part c2
© A Harradine & A Lupton Draft, Feb 2008, WIP
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10. The Turning Point.

The curved graph of a quadratic function is s
called a parabola. \

In ferms of the graph of a quadratic function, =7
the maximum or minimum value corresponds to

the turning point or vertex of the parabola.

Hence using the method of "completing the

square" to write the general form

y =2x*—12x+13 of a quadratic function into

the vertex form y =2(x—3)> =35 allows us to s Turning Point (3,-5)

see that the vertex of its graph is at (3, -5).

An easier method than completing the square each tfime is to do it just once, on the

general quadratic function

y=ax>+bx+c
and then to use it as a formula.

If you successfully completed Question 1 part i on page 14 you will know that

2
b° —4ac
y= ax® +bx+c =a(x +—)2——
2a da
b b*>—4dac
and hence we can see that the vertex occurs at —2— ,—_4
a a

In our example y =2x*—12x+13 we have a=2, b=-12 and c=13.

Hence the vertex occurs at

12 (-12)%2-4x2xI13
2x2’ 4%2

j: (3’_5)

1. Use this approach to find the turning points of each of the following functions:

a. y=x"+3x-4 b. y=5x>+4x-2 C. y=—x>+3x+2

d.  y=1x’+2x+3 e. y==-2x"+2x-2 f y=2x"+4x+k
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11. Zeros

A zero of a function is the input value (often denoted as x ) which makes the output
of the function (usually y ) equal to zero.

A quadratic function can have:
« twozeros -e.g. y=x>—4x+3 haszeros, x=1 and x=3.

« onezero -e.g. y=x"—4x+4 hasonezero, x=2.

* nozeros -e.g.y=x>—4x+4 hasno zeros .

On the graph of a quadratic function the zeros correspond to the points where y =0,

i.e. the points where the graph crosses the x-axis. This is called the x-axis intercept or

the root of the function. There are six possible cases for quadratic functions:

quadratics with minimum values

2 zeros 1 zero no zeros

AY

/

2 zeros 1 zero no zeros

quadratics with maximum values

The graphs above illustrate that:

e a quadratic function with a negative minimum value, e.g. y=(x+3)> =5, or

a positive maximum value, e.g. y=—(x+3)>+5, will have two zeros.

e a0 guadratic function with a minimum value of zero, e.g. y = (x+ 3)?, ora

maximum value of zero, e.g. y =—(x+ 3)? will have just that one zero.

e a0 quadratic function with a positive minimum valve, e.g. y =(x+ 3)2 +5,0ra

negative maximum valve, e.g. y=—(x+ 3)2 —5 will have no zeros.
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12. But what sort of zeros¢

1. For the following quadratic functions, write down their zero(s) — use a table to
record your results.

y=x"—4x+6
y=x"—4x+5
y=x>—4x+4
y=x"—4x+3
y=x"—4x+2
y=x"—4x+1

y=x>—4x

y=x"—4x-1
y=x"—4x-2
y=x"—4x-3
y=x"—4x—4
y=x"—4x-5

These functions are specific members of the family of quadratic functions that could
be described as all the functions y = x> —4x+c¢ where c is some integer value.

2.

Describe what you notice about the zeros of these members of this

family of quadratics.?2

How many members of this family have integer zeros?2

Can you explain why this is so?

What is the ‘next’ member of the family that has integer zeros?

Can you write down the next four members of the family that have

integer zeros?

What will their zeros be?

Why is it that some members of the family have integer zeros and the

other members of the family do not?2

Finding integer zeros.

3. Consider the algebraic identity x> —=7x—18=(x+2)(x—9).
a. Clearly show that x =-2 is a zero of both sides of this identity.
b. Suggest a second zero for the two sides of this identity.
C. Check that your suggestion is correct.
4, Write down a similar identity for the right hand side of y = x* + 7x+12 and
hence write down its zeros.
a Repeat for the quadratic function y=x*-3x-10.
b Repeat for the quadratic function y = x> —2x+1.
C. Repeat for the quadratic function y = x> +5x-6.
d Repeat for the quadratic function y = x*+x—30.
e Repeat for the quadratic function y =2x*> +9x+9.
f. Repeat for the quadratic function y=3x> +11x—14.
g. Repeat for the quadratic function y =—x* —11x-10.
h. Repeat for the quadratic function y =—4x* —19x+5.
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Two zeros — many quadratics

5. Consider the values x=—1 and x =2 as the zeros of a quadratic function.
a. Write down a possible such quadratic function.
b Write down another possible quadratic function.
C. How many possible quadratics are there?
d Describe the family of quadratics that have x =—1 and x =2 as their
zeros.
6.
a. Write down a quadratic with zerosx=4 and x=6
b. Write down all quadratic with zeros x =4 and x=6 (one line answer)
C. Write down a quadratic with zeros x=4 and x=6 and a y-intercept
of 8.
d. Write down a quadratic with zeros x =4 and x =6 and a maximum
value of y=1.
e. Write down a quadratic with zeros x =4 and x =6 that passes

through the point (2,-24).
Draw the graph of the functions that you wrote down in parts ¢, part d

and part e on the same axes.
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13. Solving quadratics. B s
il N

From what you have already seen there is much to know 16.4

about quadratic functions and many ways to obtain this information.

The vertex of a quadratic function.
Also called the turning point of the function, this is the point where the function

reaches its greatest or least value (its maxima or minima).
The vertex (=h,k) can be found if a quadratic is written in the form y = a(x+h)* +k .

This form can be obtained from general form by completing the square.
It can also be obtained by using the 6-Solv menu of your CASIO fx-9860G AU,

assuming that you have drawn a graph in ?@F@H that contains the vertex.

1. Find the turning point of the following quadratic functions

a.  y=x"-10x+21 b. y=x"—6x+9 C. y=2(x-1>+3
d y=x-2)(x+5) e. y=2x"+8x—24 f. y:(x+§)2
g y=x"-x-20 h. y=—x>+4x—-8 i. y=—4x>+8x+5

The zeros of a quadratic function.

Finding the zeros of a quadratic function means determining the value(s) of x for
which the quadratic function takes a zero ( y ) value (i.e. the x for which y=0).2

Not surprisingly this can be represented, solving the equation equals to zero.

For y=(x-2)*-5 y=x’+6x-16

Solve (x-2)*-5=0 X +6x-16=0
(x=2)" =5 (X +2)(x—8)=0
nx=2=15 sx=—2o0r x=8
x= ziﬁ (by the Null Factor Law)

2 Nofte, finding these zeros equates fo finding the x-intercepts of the graph of the quadratic function.
This is sometimes referred to as finding the roofs of the function.
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This result can also be obtained using the 6-So1lv menu of your CASIO fx-9860G AU,
assuming that you have drawn a graph in %H that contains the zeros of the

function. Note that, in the first example the zeros are found to be — 0.236 and 4.236,

which are 3 decimal place approximations for the exact surd zeros 2—\/5 and

2+ \/g Sometimes the decimals are “*good enough” but at other times we need to

find the exact zeros, and so an algebraic method may be needed.

2. Find zeros of these quadratics in two different ways (including exact values)
a.  y=x"—-10x+21 b. y=x>—6x+9 C. y=(x-2)>-5
d y=x-2)(x+93) e. y=2x>+8x-24 f y=(x+1)’

g y=x"-x-20 h. y=—x"+4x-38 i. y=—4x>+8x+5

If we call y=a(x+ p)(x+gq) the factored form of a quadratic function then we can
see that quadratic functions can exist in three different guises

e General Form y=ax>+bx+c

e Turning Point Form y=a(x+h)*+k

e Factored Form y=a(x+p)x+q)

3. In which of these forms is it easiest to identify
a. The vertex of the graph of the quadratic function?
b. The zeros of the graph of the quadratic function?2
C. The y-intercept of the graph of the quadratic function?

The mathematics involved in finding the zeros of quadratic functions is also used in
the solution of equations that involve quadratic expressions.

To solve x*=3x-24 2(x+1)2 =2x+7
2 _
Re-express Xt =3x+24=0 2% X 2= 2547
2x*+2x-5=0
L(x=8)(x+3)=0 2(x*+x)=5=0
And find zeros ( X ) ( 1)2 1
s x=8or x=-3 2(x+1)*-1]-5=0
2(x+4)-1-5=0
2(x+%)2=1—21
(x+1)? =1
Dy =
xz—%i@
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In both examples the quadratic in general form was obtained, factorisation was
attempted then completing the square was undertaken where needed.

Clearly an approximate solution for the second example, obtained by graphing the
qguadratic in general form (the left hand side of line 3) and finding its zeros would
have been easier!

4.

a.

Find the solution(s) o these equations
x> —=10=3x b. 3—4x=7x" c. 2x2=(x+1)*+1

The axis of symmetry

As a result of the activities in this unit you
may have reflected on the symmetrical
nature of the graphs of quadratic
functions. In other words you may have
noticed that there is a vertical

line of symmetry (sometimes thought of as
a “mirror line”) through the vertex/turning
point of the graph of all quadratic
functions. This vertical line is more formally

known as the axis of symmetry.

If you recall, the vertex of y=ax’ +bx+c 2a

2 .
occurs af (—i b—dac )

2a° 4a

This means that the axis of symmetry must have the equation x = —-2 .

2a

The equation of the axis of symmetry can also be found very easily if the turning point

is known. It can also be found if the location of two points with the same y value are

known, e.g. the location of the zeros.

a.

Find the equation of the axis of symmetry of the graph of
y=3x"+12x+1 b. y=2(x—=2)(x-38) C. y=—(x—4)>+50

y=x"+3x+6 e. y=1x"+8x-3 f. y=5x"-25

For the following quadratic functions

i Find the exact co-ordinates of the x and y axes intercepts

ii. Find the nature (max or min) and position of the turning point.
iii. Find the equation of the axis of symmetry
iv. Sketch its graph showing these features.

y=x>+3x-10 b. y=—x>+2x+3 C. y=2x"+8x+4
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14. Applying your Knowledge

2
y=ax"+bx+c
“...understand a ... gotc ... but what's up with b 2..”

By now, you should be able to describe the graphical significance of the

co-efficients a and ¢ in the function y = ax* +bx+c.

In other words, you should understand the effect that different values of a and ¢ have

on the graph of a quadratic function in general form. So, what about b2

Your task
To investigate the graphical significance of b, you are going to study the graphs of a
number of quadratic functions where a and ¢ are fixed and b takes a number of

different values. For this, you are going to use the quadratic function

y= x"+bx+..

Insert your choice
of c-value here!

Sketch
Select six or more values of b between -10 and 10. Include positive, negative, zero,
integer and fractional values. Draw the graph of the function for each of these on the

same A4-sized set of axes. Label each parabola clearly with its function.

Comment

Describe (in your own words, in sentences) the effect that altering the value of b has
on the graphs of your family of quadratic functions.

In particular discuss what changes and what stays the same when b varies.

Explain, if you can, why some of this is so.

Tabulate
Draw up a table to summarise the key features of the graphs of the 6 + members of

your quadratic family

Quadratic _ ] Co-ordinates
) x-intercept y-intercept ) )
Function of furning point
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Focus

Consider now the Turning Points of your family. Plot them on a new set of axes.

What do you notice?

Calculate the Turning Points of some other members of your family and add them to
this graph.

Find an equation that describes the shape of this graph of the turning points.

Conclusion
Describe, in your own words, the effect of b, on the graph of y = ax*+bx+c.

It may be useful to think about if b is zero and gets small (i.e. b — —c ) what happens

to the graph and if b is zero and gets large (i.e. b — o« ) what happens to the graph.
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15. The Discriminant — the fool of the maestro.

Recall that completing the square on the general quadratic function gives:

2
b b° — 4ac
y= ax2 +bx+c=alx +—)2——
2a 4a
-b b4
and hence we can see that the vertex occurs at (2— ,—4—616]
a a

Let us now systematically consider the different numbers of zeros that a quadratic

function may have.

We have seen that two zeros occur when the graph cuts the x-axis twice.

As described in Section 11, there are two possibilities here:

b* —4ac
e the graph has a negative minimum value, i.e. a >0 and —4— <0
a
which implies that the numerator is positive i.e. b* —4ac >0 .
" . . b* —4ac
e the graph has a positive maximum value, i.e. a <0 and —4— >0
a

which implies that the numerator is positive i.e. b* —4ac >0 .

We have seen that exactly one zero occurs when the vertex of the graph lies on the

x-axis. There are two possibilities here:

- . b* —4ac
e the graph has a zero minimum value, i.e. a >0 and —4— =0
a
which implies that the numerator is zero i.e. b* —4ac =0.
b* —4ac
e the graph has a zero maximum value, i.e. a <0 and P =0
a

which implies that the numerator is zero i.e. b> —4ac =0.

We have seen that no zeros occur when the graph does not cut the x-axis.

There are two possibilities here:

b’ -4
e the graph has a positive minimum value, i.e. a >0 and _4—ac >0
a
which implies that the numerator is negative i.e. b* —4ac <0.
b* —4ac
e the graph has a negative maximum value, i.e. a <0 and 4z <0
a

which implies that the numerator is negative i.e. b* —4ac <0.
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1. Calculate the discriminant and hence determine the number of zeros of

each of the following functions:

a.  y=x"+5x+2 b.
d. y=-3x*+2 e.
2. For what value(s) of k does,
a. y=x>+2x+k
b. y=kx* —x+3
C. y=—x"—3x+2k
d. y=x"+kx+4

© A Harradine & A Lupton

y=3x>+6x+3 C. y=4x>+5x+2

y=-x"+2x-2 f. y=x'+mx+m’

have no zeros.
have two distinct zeros.
have exactly one zero.

have no zeros.
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16. eTech Support.

16.1 Opening a geometry file and animating it. =T FIls [I=t
QP TRIJAD . =]

Enter the GEOM mode of your 9860.

Press File (F1) and then press 2:0pen.

Move the input bar onto the file required and press [exg.

Should you get it, do not worry about the message Clear Current Image?
— unless there are unsaved changes to a currently open Geometry file that you do

not wish to lose.

With a file that is able o be animated (like the ones in this unit), the sequence
required to run an animation is,
e gotothe Animate menu by pressing (Fg),
e chose either
o 5:Go (once) -forasingle “run through” or
o hk:Go (repeat) —forrepeated animation (stopped by [CA)

16.2 Generating tabular representations of functions.

TRELE Tahle F Y=

Enter the _AI—H—}' mode of your 9860. viB-h. SHEsnsE [—1

Enter the function of interest into a free row. Make sure that hEE [—3
XoT : : T (=1

you use to enter your variable x . Use to square it. L — e

To sef the input values of X for which you would like the

Table Settins

table drawn, press SET (F5). "
. Startig
Select the x value that will Start your table, End your Erd _c10
table and the Step (or gap size) in between successive
x values in your table. Press [EXE) after each entry.
Press TABL to see a table of your chosen inputs and the
" Tl
corresponding outputs as determined by your function. [-}' sufﬂ
2 1]

Use your Arrow Pad to move up and down the column of 3 B a

[Fokt [0 AP [EDIT F-Con [G-FLT

X values or across to the column of function values.
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To plot the table’s values on a Cartesian Plane press G=PLT (F§).
This will plot these values on the currently set View Window.

This will often need to be adjusted to incorporate the points under consideration.

Adjusting the View Window.

Liew Window
Amin E

Press [SHFT) then V-WIN (F3) to access the View Window max 110
. . . dot’  iH,ETIIESET
settings. Enter as Xmin the least value on your x-axis and as Hrin

|IHIT TRIG|SZTD EH 5'

max the greatest value on your x-axis.

Enter as the scale your choice of distance between the “ticks” on your x-axis.

Press [EXE) between settings. Set your y-axis in a similar way.
Press [EXf again to finalise your settings. The plot of your table

can now occur on the axes that you have just set up.

Viewing table and graph together. Usriable  fRanse
Garh Func  f0n

To see a table and its graph together, rac Resull fd-c
Simyl Grarh :0ff

enter the SET UP by pressing and then (MENU), Eerivative Hine 4
[T+G [oFf

arrow down @ to Dual Screen and choose T+6 [F1). Now when you G-PLT you

will see your table and its graph side by side. B T

Linking table and graph.

When viewing a table and its graph in dual screen (as

above), a link can be established between the pairs of i
values in your table and the corresponding points plotted in { é E:EE
your graph. To establish this link press then GLINK (F2). |/mmm
If you arrow up and down through the table a cursor will V1=—0.5RE+50+50
. E:y B bl
indicate corresponding points. [ a Bs
N su. 5
1] 50
=g Y=0U. 5
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16.3 Generating graphical representations of functions.

Enter the function(s) of interest into ii.e“&“é mode of your 9860. ETEEQ Func  fv= 1

. . YZ2EZHE [—1]

Upon entry, functions are automatically selected YIESH [—1]

YAB 3.0 [—1]

(indicated by the black box around their equals sign). 5 ;
ZEL DEAL

They can be deselected or reselected by pressing SEL (F1).

Prior to graph drawing it is wise to put some thought into the View Window settings
(see 16.2). Once these are satisfactory press DRAW (F6).

Viewing families of functions.

Grarh_ Func  i4s
" . . . Wi=Ma, [M=1.2.5.3.4,
Families of functions can be entered using a single 3% E:%
parameter, providing that values are assigned to the Eg E:%
¥E: [—1
parameter as shown. The parameter (a letter of choice), LY | P lxtlvil x|
square brackets, and equals sign are red or
yellow entries above the keys on your 9860.
Use (2] for the commas. Either style of entry will result in
multiple functions being drawn on the same axes.
Viewing families of functions dynamically.
Dynam%c Funciy=
The effect of changing a parameter upon a function can ;'EE”HP
be view dynamically in & mode. ya
WE:
Enter a function in terms of a parameter and press VAR (F4).  LZE: [HE8 N BRI ED (Rl

Press SET [F2) to select the values for your parameter, and [EXg your settings.
Press SPEED (F3) to choose the speed of the animation. [EX§ your settings.
Press DYNA to see your family of functions represented dynamically.

Press to stop an ongoing animation.

Y1=Mxz Y1=Mxz ) Sreed Conlrol
Dynamic Lar iM -~ & Drrnamic SetLlina Dynamic Sreed i
| f=-5 | Fl:Stor&Eo Ik
Starti-5 F2i51om S
Erid 15 F3:Hormal 3
Step * diFast. o
B SET FPEED OYHA e [ = F T
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16.4 Obtaining graphical information about functions.

With a graph drawn in ii.e“&“é mode, a wealth of graphical

information can be obtained via the G-Solve menu which is
obtained by pressing and then 6-SLV [F5).

N

[FooT [MA= MIN [FirT IEcT [

ROOT (F1) will find the zero(s) of the function that are within the view window.

Max (F2) will find any maximum turning points that are within the view window.

Min (F3) will find any minimum turning points that are within the view window.

Y-ICPT will find the y-intercept if it is within the view window.

ISCT (F5) will find the intersection of two graphs that are drawn and meet within the

view window.

Press then Y-Cal (F1] to calculate a y-value for your

choice of x-value.

Press then X-Cal (F2) to calculate a x-value for your

choice of y-value.

Notes on G-Solve.

[ % I

Enter Y-Ualue

Wiz [

Should more than one of the feature being sought occur in the view window

(i.e. 2 zeros), the leftmost one will be found first. Press 3 to move to the next one.

If more than one function is graphed, you will need to
choose which graph for which features are being sought.
Make this selection by pressing @ and &® and then [Exg.
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17 Answers

1.2. Investigating Areas

1.3. Capturing the o

Qu.1
Find area of APAQ

and of AQBC and
take these from the

total area of 100cm?>.

Qu.1

Infinitely many

Qu.2
The length of AQ

4. The road to proof
Qu.4

max _ | when
/min ofy=1 y=
al min -6 -2
b| max 14 4
C min =—1.2 =—6.1
d| min 5 -3
e| max -7 2
f | max 2 -8
Qu. 6
max of when
/min = X =
al min 11 -1
b| min | -15 2
c| min -9 -12
dl max | -1 4
el max | =9 3
f | min 0 3
g| min 1 7
hi min | —-11 -3

Qu. 2
10 0 50 | 50
9 0.5 45 | 54.5
8 2 40 58
7 4.5 35 | 60.5
6 8 30 | 62
5 12.5 | 25 | 62.5
4 18 20 62
3 245 | 15 | 60.5
2 32 10 58
1 40.5 5 54.5
0 50 0 50

Qu.4

As AQ increases the
area of PQCD
increases, reaches a
maximum, then

decreases.

Qu.5
62.5cm* when
AQ=5cm.

50cm® when
AQ=0cmor 10 cm.
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Qu.3

0<x<10

Qu.4

Qu.5
1 10-1=9
2 10-2=8
3 10-3=7
4 10-4=56
5 10-5=5
X 10- x

Qu.6

Ix(10-x)x10

=5(10-x)

Qu.7

100—1 x> =5(10—x)
=100-1 x> —50+5x

=—1x* +5x+50

Qu.8
x=0 and x=10

Qu.9

This equation is finding
when the area of
PQCD is equal to 50
cm and ifs solutions are
the corresponding
lengths of AQ.
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The proof requires an
argument like (for a):

(x+1)*20
S(x+DP 411211
~y211

This min. value of y = 11
occurs when

(x+D*=0
sx=-1
5. Forms of Quad. Fns

Qu.1
y=ax’ +2ahx+ah® +k

a, 2ah and ah* +k
are three constants in

y=oX X+

Qu.2

a. y=x>+6x+11
b. y=x>—4x+5

c. y=x>—10x+5

d. y=—x>-2x-5
e. y=2x>-24x+22
f. y=-3x>-24x-36
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6. Turning Point form
Qu.1

a. y=(x+4)>-17
min  y=-17

when x=-4
b. y=(x+5)"-23
min  y=-23
when x=-5
c. y=(x=-D+1
min  y=1
when x=1
d. y=(x-2)"-10
min  y=-10
when x=2
e. y=(x+3)7-3

min y=—

/. Further C.T.S.
Qu.1

a. y=2(x+2)"—12

b. y=5x+1)*-2
c. y=-2(x—-3)*+%L
d. y=-3(x+2)*+13

e. y=—"2(x-3)>-3

—h

y=1(x+3)°+1
g y=1(x-18)"-102
h. y=—1(x-2)"+4

. _ b \2 b2_dac
Ly=a(x+2)" -2
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8. The graphs of
quadratic. functions

8.1 Symmetry

Qu.1

a. Gefts big, fast.
(grows faster as x
decreases)

b. Gets big, fast.
(grows faster as x
increases)

c. The graph will get
very ‘steep’.

As the behaviour is the
same, the graph will be
symmetrical either side
of x=0

Qu.2

a. It getssmaller as x
approaches 3, then it
gets big, fast as

Xx exceeds 3.

b. Gets big, fast.

c. The graph will have
its lowest point when
x =3. It will have similar

‘steepness’ to y = x”
either side of x=3.

Qu.3
_ 2 (v 7\2

-2 4 25
-1 1 16
0 0 9
] 1 4
2 2 1
3 9 0
4 16 1
5 25 4
Qu.4

The same each side of
a central/mirror line.
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8.2 Families of Q.F.
Qu.1

(i) Same parabolic
shape.

A shared max/min
point of (0,0).

All symmetrical either
side of x=0.

(i) Some are ‘tighter’
that others i.e. some
grow faster than others.

(i) y=-3x"isan
‘odd one out’ asiit is
‘up-side down'’
compared to the
others.

AW/

Qu2(a) y=(x—h)’
(i) Exactly the same

shape.
Min value at (0,h)

(i) Position of min.
Moved across h units
left (h>0) or right (h<0)
(iii) No.

Qu2(b) y=x>+k

W,
N4

(i) Exactly the same
shape.
Min value at (k,0)

(i) Position of min.

Moved up/down k units
up (k>0) or down (k<0)
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(i) No.
Qu 2 (c)

LV
JAY

i

(i) Same parabolic
shape.

A shared max/min
point of (-3,2).

All symmetrical either
side of x=-3.

(i) Some are ‘tighter’

that others i.e. some
‘grow’ faster than
others.

(i) y=0(x+3)*+2is
an ‘odd one out’ as it is

a straight line and not
a parabolic shape. This

is because it is really
just y=2.

W
N

b.

i
S

Qu 4
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They all share the x-
intercepts of -1 and 3.
This is because

y=mx’> —2mx—3m

y=m(x>—2x-3)

and the values x = -1

and x =3 make

x> =2x-3=0 making

the function zero

regardless of the value

of the parameter.

8.3 Find a function...

(some possible answers)

Qu.1

y=x"+5
y=—x>-100
y=(x+4)>+1
Qu 2

y=x"

y =(x—20)*
Qu 3

y=(x=3)(x+4)
y=="2(x+1)(x+12)

Qu 4
| don't think so..

y=(x+3)(x-2)(x+5)

will work, but is it a
quadratic function?

Qu. 5
a.
y=(x=5)"+13

y=—4(x-5)>+13
=—5(x—D(x-9)

b.

y=—4(x—5)"+13
=—f(x-D(x-9)

3

C.
y=L(x-3)?
y=L8(x+1)2

(=

1
3

[=))

d.
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y=—(x—6)>+14
y=—(x—4)*+14

9. So, how am | going¢

Qu. 1

a. y=x"—14x+25

b. y=-2x"+4x+4

Qu. 2

a. y=(x+5°+5

b. y=4(x+3)’ -4

Qu. 3
a. (3D
b.

V1l=—tr=302+1

=3

Qu 4
y=(x+2)*| y=-5x-3.5)"
+11 +2
max/ .
] min max
min
of 11 2
When X=2 x=3.5
no. of
0 2
Zerose
Qu 5

a. The graphiis

tightened / narrowed.

b. The graphis moved

up 5 unifs.

Qu. 6

a. y=—1(x-3)’+13
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b.
(x=5)*>0
.'.—%(x—S)2 <0
s—L(x=57+62.5<625
Qu.7
a. (i) 6cm
(i) 20 cm?2
(i) 30 cm?2
(iv) 50 cm?
b.(i) 10- x cm
(i) 5x cm?

(iii) 5(10- x) cm?
(iv) 5x+5(10- x)
cm?2
c. itis constant (with a
value of 50 cm?) as
5x+5(10—x)
=5x+50-5x
=50

10. The Turning Point
Qu.1

3 _25

a. (=375
b 2 _14
57 5
c. G4
d. (2,1
e %
f. (-1,k=2)

12. What sort of zeros?
Qu.1

No zeros
No zeros
x=2

x=1land x=3

x=0.586 & x=3.414
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x=0.268 & x=3.732
x=0&x=4

x=-0.236 , x=4.236
x=-0.449 , x=4.449
x=-0.646 , x =4.646
x=-0.828 , x=4.828

x=-land x=5

Qu. 2

a.

e Theyvaryin
number.

e Some are integer,
some are not.

e They are equalin
distance to x=2.

b.

An infinite number, as
there are infinite pairs
of infegers equidistant
tox=2.

C.
y=x"—4x-12
leros: x=—2,x=6
d.

y=x"—4x-21

leros: x=-3 ,x=7

y=x"—-4x-32
leros: x=—4 , x=8

y=x>—4x—-45
leros: x=-5,x=9

y=x>—4x—60
Zeros: x=—6, x=10

e.

As the graph moves
down it will not always
pass through integer
points on the x-axis.

Qu.3
Q.
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(2)* =7(=2)-18
=4+14-18

=0
(—2+2)(-2+49)
=0x-11

=0

x=9

(9)* -7(9)-18
=81-63-18

=0

9+2)9-9)
=11x0

=0

Qu.4

a. y=x-5((x+2)
So the zeros are
x=5and x=-2
b. y=&x-Dx-1
So the zeros are
x=1 (and x=12)
c. y=x-D(x+6)

So the zeros are
x=1and x=-6

d y=(x+6)(x-5)
So the zeros are
x=—6and x=5

e. y=2x+3)(x+3)

So the zeros are

x=-2 and x=-3

f. y=(x-1D)3Bx+14)
So the zeros are
x=1and x=-4

g. y=—(x+10)(x+1)
So the zeros are
x=-10 and x=-1

h. y=—(x+5)4x-1)
So the zeros are
x=-5and x=7

Qu.5
a. y=x+D)(x-2)
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=x’-x=2
b. y=Q2x+2)(x-2)
=2x>—2x—4
c. An infinite number
d. y=alx+1)(x-2)
=ax’ —ax—2a
providing that a # 0

Qu.6

a. y=x—-4)(x-6)

b. y=a(x—4)(x—6)
providing that a #0

c. y=1(x-4)(x-06)

d y=—(x—-4)(x—-6)

e. y=-3(x—4)(x—6)

AVAV

A

13. Solving Quadratics
Qu.1

a. (5,-4)

b. (3,0)

c. (1,-3)

d (G4

e. (-2,-32)
f. (=4,0)

g. (3,—20%)
h. (2,—4)

i. 1,9
Qu.2

a. x=-7 and x=-3
b. x=3

C. x:2+\/§ and

x=2-4/5

(approximately)
x=-0.732 and
x=2.732

d. x=2and x=-5
e. x=—-6and x=2
1

f. X:—g

g. x=5and x=-4
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h. No zeros
; —_1 -5
. x=—5 and x=3

Qu.3
a. Turning point form
b. Factored form

c. General form

Qu.4
a. x=-2and x=5
b. x=-land x=2

C. le_ﬁ and

x=1+4/3
Qu.5
a. x=-2
b. x=5
c. x=4
d x=-3
e. x=-8
f. x=0
Qu.6
a. (i) (-5,0) and (2,0)
(0,—10)
(i) min at (=3,-124)
(iii) xz—%

gl

b. (i) (~1,0) and (3,0)
0,3)
(i) max. at (1,4)

(i) x=1

[1 4

c. (i) (—2+\/5,0) and
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(-2-+/2,0)
0,4)
(i) min. at (-2,—4)
(iii) x=2

|

\/

15. The Discriminent
Qu.1

a. A=17
so there are 2 zeros.

b. A=0
so there is 1 zero.

c. A=-7
so there are no zeros.

d A=24
so there are 2 zeros.

— 44
e. A=4

so there are 2 zeros.

f. A==3m’
so there are no zeros.

Qu.2
a. k>1

b. k<3
c. k=-3
d —-4<k<4
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