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Rationale for the approach offered here.

What is offered in this booklet is a suggested approach to the introduction of what is
traditionally a very difficult topic for many students.

It is not a traditional approach and is only possible if electronic technology is used.

It offers students real (non trivial) contexts to interact with, and as a consequence they
learn the basic structures of the topic.

The aim is for the student to be introduced to multiplicative patterns and the notion of
logarithms through examples that mean something to them.

We have not attempted to deal with the traditional parts of the course that we all know
so well. Some comments are made at the end of the booklet however.
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For the user.

This unit has been designed assuming you have access to some form of electronic
technology at all times, including times when you are working outside the classroom.
The use of electronic technology is an integral part of the learning cycle we employ.

The Casio 9850GB PLUS graphics calculator is the form of electronic technology that
has been selected for use in this unit.

MS Excel or any other spreadsheet could be used if desired, but the instructions in this
document refer to the Casio 9850GB PLUS Graphics Calculator.

Assumed Knowledge:

It is expected that you have a sound knowledge of:

• index laws
• the concept of a mathematical model
• using algebra to describe patterns
• basic skills in algebraic manipulation
• linear function theory, including the fitting of least squares regression lines

Learning Outcomes

After interacting with this unit it is expected that you will:

• understand what is meant by a multiplicative pattern and the term ‘constant
multiplier’

• be strong users of the laws of logarithms
• develop mathematical models, using logarithms, of systems that behave in

both totally predictable and highly predictable manners
• develop mathematical models, with the help of electronic technology, of

systems that behave in both totally predictable and highly predictable manners
• be able to solve exponential equations both with and without the use of

electronic technology
• appreciate the useful nature of solving exponential equations
• solve problems using the theory of geometric sequences and series

The Learning Cycle

The unit begins with a Stenduser. It is highly recommended that you attempt as many
of the challenges that you can before doing any of the ‘new’ work offered in this unit.
It is unlikely you will complete all of the challenges in the most accurate, appropriate,
desirable or efficient manner – if at all. If you do produce a solution, discuss them
with your classmates and teacher. The experience will hopefully enthuse you and give
you a purpose to move on to the learning of new things. Once you have mastered the
new work on offer you will be prompted to return to the Stenduser and attempt to
conquer it. The flowchart on the next page may help you to visualise the learning
cycle.
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A flowchart of the learning cycle.
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1. Stenduser: Forecasting gas production

There is a great deal of thinking
and planning involved in the
setting up and running of a gas
production site. Geologist and
Engineers work together to assess
sites for the possible extraction of
gas.

Once a site is chosen and a well is
situated on that site the wells’
productivity is monitored by
measuring the flow rate of the gas
out of the well.

The gas flow rate is measured every minute. The method of measurement is
interesting in itself. A Bernoulli technique (do a search on the net and see what you
find) is used. You can imagine the volume of data such frequent measuring would
generate. To alleviate this problem, engineers ‘coarse up’ the data by calculating the
average daily flow rate for a whole month. Think hard about this – describe the
mathematical process used to do this. The end result of this is that all we are
interested in are the values that are set at one month apart.

A production site may comprise a number of individual wells. The production site
remains active while its productivity is viable. To be viable, the site must supply
enough gas so that consumer’s demands are met. There is also an issue of cost to be
considered – a comparison of running costs and income from the site.

The scenario (a real one)

A gas production site in northern South Australia contains six wells. Five of the
wells are installed and producing gas.

After consideration of the demand and many other factors the Reservoir Engineer in
charge decides that an average daily rate for a given month must be 5 MMscf/day
(millions of cubic feet per day) or greater for the site to be considered viable.

If the average daily rate for a given month falls below 5 MMscf/day the sixth well
will be installed and begin to produce gas.
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The table below gives the actual average daily flow rate from the site for the months
shown when only five wells are installed.

Month end date Relative time
Rate of Gas

Flow
(MMscf/d)

5/31/1998 51.717
6/30/1998 47.724
7/31/1998 36.717
8/31/1998 31.755
9/30/1998 28.066
10/31/1998 22.248
11/30/1998 22.199
12/31/1998 19.154
1/31/1999 16.377
2/28/1999 14.611
3/31/1999 13.403
4/30/1999 12.72
5/31/1999 11.285

Reservoir Engineers do not wait until the rate falls below the value they have set. It
takes time to prepare a well for use, so they need to be able to forecast when it will be
necessary to install a well.

They use the data given above to forecast (or predict) when well 6 should be installed.

Challenge One:

Complete the table on this page and produce a graphical display of the data.

Challenge Two:

Given the data, predict in what month the rate of gas flow will drop to below 5
MMscf/day and hence, when well six should be installed to boost gas production.
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Challenge Three:

Use the extra data supplied below to guess when well six was installed and producing
gas.

Month end date Relative time
Rate of Gas

Flow
(MMscf/d)

6/30/1999 12.992
7/31/1999 9.21

8/31/1999 8.836

9/30/1999 5.874

10/31/1999 4.938

11/30/1999 11.775

12/31/1999 16.709

1/31/2000 15.579

2/29/2000 14.861

3/31/2000 14.067

4/30/2000 26.285

5/31/2000 28.882

6/30/2000 24.963

7/31/2000 23.124

8/31/2000 20.43

9/30/2000 18.963

10/31/2000 17.335

11/30/2000 15.61

12/31/2000 14.516

Challenge Four:

The site that we have been studying had only six wells. Hence, when the average daily
rate of flow falls below 5 MMscf/day after the installation of well six, the site will be
closed down.

It is very important for companies to be able to forecast when such an event will
occur.

Use the extra data supplied in Challenge Three to predict when this site will be shut
down.
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2. Multiplicative Patterns

The following activities will introduce you (or remind you) of how some systems
behave in a completely predictable manner. We will use algebra to describe the
behaviour and to determine what will happen for cases that we cannot physically
experience.
A. Paper Folding

1. Take an A-4 (or A3 if you have one) piece of paper.  Mark one face with a cross
to denote this to be the uppermost face.  Lay it on the table (cross upwards) and
fold it in half going from left to right.  Be sure to crease the fold well.  Open the
paper so it is A-4 sized again.  It has only one crease line that has formed a
valley.  We will call this a valley crease.  Return the paper to the 'folded in half'
position and fold it in half again so that the new fold is parallel to the previous
one.  Open the paper so it is A-4 sized again.  Notice this time that it has more
valley creases but also some creases that form 'mountains' - we will call these
mountain creases.  Your job is to continue to fold in halves and keep track of the
number of valley and mountain creases.  Summarise your findings in your
problem book using a table similar to the one below.

number of
folds
(f)

1 2 3 4 5 6

number of
valley
creases

(V)
number of
mountain
creases

(M)
total number

of creases
(T)

2. Describe a pattern for the number sequences for V, M and T.

3.  Look at a term and its previous term. Is there a multiple involved?
 If so, what is it for V, M and T?

4. i) Conjecture a rule that links V and f
ii) Conjecture a rule that links M and f
iii) Conjecture a rule that links T and f
iv) Draw graphs to illustrate each rule.

5. Use your rules to predict how many of each type of crease will be present if the
paper is folded 10 times.

6. Use your rules to predict how many of each type of crease will be present if the
paper is folded 20 times.

7. It is possible to prove the correct conjectures. Investigate how you may go about
this.
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B. Zeno’s Paradox

Zeno was a philosopher from the 5th Century BC. He stated paradoxes (seemingly
contradictory statements) about the schools of thought concerning magnitude. People
thought of magnitude in one of two ways:

Magnitude is infinitely divisible – this means a length may be broken up into an
infinite number of smaller bits.

OR

Magnitude is made of a very large number of small indivisible atomic parts.

One of Zeno’s paradoxes is written below. It refers to the idea that magnitude is
infinitely divisible:

“If a straight line segment is infinitely divisible then motion is impossible, for in order
to traverse the line segment it is necessary first to reach the midpoint, and to do this
one must first reach the one-quarter point, and to do this one must first reach the one-
eighth point, and so on, ad infinitum.

Since space is infinitely divisible, we can repeat these 'requirements' forever. Thus the
runner has to reach an infinite number of 'midpoints' in a finite time. This is
impossible, so the runner can never reach his goal. In general, anyone who wants to
move from one point to another must meet these requirements, and so motion is
impossible, and what we perceive as motion is merely an illusion.

It follows that the motion can never begin”

Let’s investigate the mathematics of Zeno’s line segment referred to in his paradox:

Consider a line segment of length one unit.

1. Find and mark the halfway position along the line segment. Call this point 1.

2. Find and mark the position halfway from the beginning of the line to the point
1. Call this point 2.

3. Find and mark the position halfway from the beginning of the line to the point
2. Call this point 3.

4. Continue for as long as is sensible.
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5. Complete the following table

Point number
p

0 1 2 3 4

Length of line
segment up to
mark point p

(l)

1

6. Look at a term and its previous term. Is there a multiple involved? What is it?

7. Determine a rule that links l with p and draw a graph that illustrates the rule.

8. Predict the length of the line segment up to point 10.

9. Predict the length of the line segment up to point 20.

10. Relate what you have just experienced back to Zeno’s paradox. Where does
Zeno’s paradox break down?

BY THE WAY
Zeno stated another paradox concerning the idea that magnitude is made up of lots of
small indivisible atomic parts:
“If time is made up of indivisible atomic instants, then a moving arrow is always at
rest, for at any instant the arrow is in a fixed position. Since this is true of every
instant it follows that the arrow never moves.”

A summary of our findings thus far.

So far we have experienced systems that produce number patterns that:

• grow with consecutive values increasing exactly by some common multiplier
• decay with consecutive values decreasing exactly by some common multiplier

Such patterns are said to grow or decay in an exponential manner.

It is the constant multiplier between consecutive terms that is the defining feature of
exponential patterns.
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3. Geometric Sequences

Introduction

Number patterns that have elements in between which no other numbers exist are
called sequences.

The patterns produced in the paper folding activity are sequences.

Sequences in which each consecutive term grows by a constant multiplier are called
GEOMETRIC SEQUENCES.

In our paper folding example the sequence that resulted from the number of valley
creases was:

1,2,4,8,……………which is a geometric sequence

The sequence that resulted from the number of mountain creases was:

0,1,3,7,……………which is not a geometric sequence

A rule for geometric sequences

Consider the following table that depicts a geometric sequence of first term a and
which grows with constant multiplier r

n 1 2 3 4 n
Tn a a×r a×r×r a×r×r×r ??

Clearly the nth term will be:
a×r×r×r×r×r×r×r×r×r×r………with (n-1) r’s

which could be written as
arn-1

So, if we know that a pattern behaves in a geometric (or exponential) manner we can
simply find a formula that will generate any term in the sequence.

We could forecast (with total reliability) the value of any term.
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Displaying Geometric Sequences on the Graphic Calculator

Consider the following sequence that you are told is a geometric sequence.

n 1 2 3 4 n
Tn 6 18 54

The first term is 6 and the constant multiplier between consecutive terms is 3. Hence,

Tn = 6×3n-1

Enter the TABLE mode of your calculator. Use SET UP to ensure that the preferences
for the table mode are set as follows:

                                           

In this instance Y1 will represent Tn and x will replace
n. Define Y1 as 6×3^(X-1) as seen opposite. X is
entered using the X, ,T key.

Use RANG (F5) to set the term numbers that you want
to display. In this case let’s view the first 7 terms, so
set the parameters as shown. The pitch of 1 indicates
we want the consecutive terms in the sequence.

Press EXIT and then TABL (F6) to view the sequence
members.

Now use V-Window (SHIFT then F3) to set the scale and end points of the axes for a
graph to display the sequence as shown below. Press EXIT, produce the table again

and then use G.PLT (F6) to produce the graph.

This graph illustrates to you the rapid growth of values in this sequence.
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NOTE: Using G.CON (F5) to produce a graph gives a graph as seen below, which is
totally inappropriate in this case.

Finding terms of a Geometric Sequence

Consider the geometric sequence defined by:

Tn = 200×(0.9)n-1

Note that a multiplier of 0.9 indicated the sequence will be decreasing in nature, and
each term will decrease by 10% from the previous (or the next will be 90% of the

previous).

NB. Some practice or further exposure to the idea in italic above may be required.

Produce a table of the first 8 terms of this sequence and produce a graphical display of
them. Check they are the same as ours that are seen below.

                                           

Since the graph display has no numbers on the axes you need to remember how you
set the view window parameters.

If we wanted to find the 20th term in this sequence we could follow a traditional
process as follows:

Tn = 200×(0.9)n-1

⇒ T20 = 200×(0.9)20-1

⇒ T20 = 200×(0.9)19

and then using the RUN mode of the calculator
evaluate the right hand side of the equality.

So T20 = 27.01703435 – I wonder what the exact
answer is?

OR you could simply over type in a table that illustrates the sequence, as follows:



Exponential Growth – and related knowledge, skill, processes and applications – DRAFT 14/5/01

© 2001 Anthony Harradine/Deb Woodard-Knight Page 14 of 22

Produce a table of the first 8 terms again and then simply place the cursor any where
in the X column. Type the term number you want, in this case 20. Hey Presto! If you
use the right arrow key to put the cursor in the corresponding Y2 value, the full
decimal display is seen, as is the rule for the sequence.

You could of course have simply reset the table’s range.

                                       

Oh decisions, decisions, which method to use?

Finding the term number of a given term (solving an exponential equation) with the
graphic calculator

Let us again use the geometric sequence defined by:

Tn = 200×(0.9)n-1

Suppose we had to find the first term, which is less than 1 in this sequence.

We could simply use trial and error and over type values in the table until we reach a
successful end point. The following screen show how this may be done. Each X value
has been typed in.
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Alternatively we could use a technique as follows:

Assume that 1 is a term in the sequence, in which case we let Tn = 1.

This implies that:

1 = 200×(0.9)n-1

This is called an exponential equation. It can be solved (like a linear equation may be
solved). The algebraic technique is a little out of our reach at this stage, but the
calculator can be of assistance. We can use the SOLVER, which can solve many types
of equations.

Enter the EQUA mode.

Press F3 to enter the Solver. If you have an equation
in the solver already, as I do, then use DEL (F2) to
delete the equation. Select YES (F1) when prompted.
Or, simply highlight it and over-type it.

Enter the equation we have to solve. The = sign is
accessed by pressing SHIFT and then the decimal
point key. Once entered press EXE and the
highlighted X=52 (or something similar) will re-
appear and be highlighted. It is NOT the answer, but
the value the calculator will use as its first guess as
the solution. It is the last value you used as X in the calculator.

Use SOLV (F6) to find the solution. If the Lft and Rgt
values are the same, an accurate solution has been
found.

The solver uses Newtons-Method to solve equations.
The Lft and Rgt are the values of the LHS and RHS of the equation for the value of X
that Newtons Method returns.

We will develop an algebraic method of solution a little later.

Back to the Stenduser

Return to the Stenduser and see if you can apply any of the knowledge you have
learned thus far in order to conquer the challenges.

Discuss your thoughts with your colleagues and teacher.
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4. Logarithms – little beasties that may help to conquer the
Stenduser

A. Introduction

The word logarithm is simply a fancy word for an index.

Consider

23 = 8
You would be accustomed to calling the 3 an index or exponent. It is also known as a
logarithm. The 2 is known as the base and the 8 is called the third power of two.

Hence we can say that ‘the logarithm is 3’.

Now consider

43 = 64
Again we could say ‘the logarithm is 3’.

But this seems silly since we cannot differentiate between the two threes. Hence the
following terminology was invented.

In the first case we say:

The logarithm of 8 with base 2 is 3 or      log
2
8 = 3

In the second case we say:

The logarithm of 64 with base 4 is 3 or      log
4
64 = 3

Hence we can say:

ax = b  ⇒ log
a
b = x
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B. Logarithms and Multiplicative Patterns

A simple and obvious, but powerful link exists between logarithms and geometric
sequences.

Complete the following tables, given that in each case y is a geometric sequence, and
answer the questions that follow:

x 1 2 3 4 5 6 7 8
y 8 16 32 64

log
2
y

x 1 2 3 4 5 6 7 8
y 1 4 16 64

log
4
y

x 1 2 3 4 5 6 7 8
y 10 100 1000 10000

log
10

y

1. What does each of the ‘log sequences’ have in common in the way they grow?

2. Explain why your answer to question 1 will be true for all log sequences that are
generated from a geometric sequence.

3. Your calculator has the ability to calculate
logarithms in base 10. In run mode you can use
the log key to calculate log

10
1000. Note that the

small 10 does not appear on the calculator. You
can also calculate log

10
1200, log

10
10000 and so

on. The logarithm in base 10 of 1200, or any number other than a power of 10 is
a little tricky to think about. We will visit it later, but for now accept that the
quantity exists.
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Complete the following tables using your calculator and determine if your
findings from the above questions hold in these situations. Pay particular
attention to the last two tables. Comment after thought!

x 1 2 3 4 5 6
y 8 16 32 64 128 256

log
10

y

x 1 2 3 4 5 6
y 200 160 128 102.4 81.92 65.536

log
10

y

x 1 2 3 4 5 6
y 1000 98 11 1 0.11 0.01

log
10

y

x 1 2 3 4 5 6
y 52 46 41.5 38 34.1 30.5

log
10

y
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C. Ironing out the curves.

You should have noted that the last two tables contained sequences that were almost
exponential (or geometric) and that the corresponding log sequence was almost
linear.

This fact leads us to a technique for determining a rule for a sequence that is almost
exponential in nature (like the one in the Stenduser).

Consider the following situation:

Scuba divers often carry tanks of compressed air on their backs while diving.  They
breathe this air while under the surface of the water.  The compressed air contains a
high percentage of Nitrogen.  While under water the body of a diver experiences
significantly more pressure from the water than it does from the air in our atmosphere.
One effect of this is that the Nitrogen inhaled by the diver dissolves into the blood
stream and is then transported into the body tissues of the diver.  Upon returning to
the surface and experiencing the normal pressure due to the atmosphere, the nitrogen
within the tissue is expelled over a period of time.

A scientist studied the variation of the amount of Nitrogen that remains over one hour
within a particular tissue type in the body once divers have returned to the surface.
We will call this type of tissue - 'type A tissue'.

The table and graph below illustrates the data collected by the scientist.  The amount
of Nitrogen is measured as a percentage (P) remaining in type A tissue and is an
average of the values gained from the divers in his study.  Nitrogen readings were
taken every 10 minutes.

Ten minute
period
number

0 1 2 3 4 5  6

P (%) 100 52.3 24.1 14 5.9 3.0 1.8

Calculating consecutive ratios would give us an idea
of whether or not the P values decay in an
approximate exponential fashion. The ratios are
approximately equal (which is equivalent to saying
we have an approximately constant multiplier),
suggesting an approximately exponential
relationship.

A more thorough analysis follows in an attempt to determine an appropriate algebraic
model for this data.
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Enter the STAT mode of your calculator. In list 1
enter the period numbers and in list 2 the percentage
values.

Place the cursor in the heading of List 3.

Now enter the formula  while the
cursor is in the heading of List 3. The List command
is accessed by pressing OPTN (option) and then
LIST (F1) and then List (F1). Finally enter 2..

Press EXE and the logarithms with base 10 of List 2
will be calculated.

We can now investigate to see if the log sequence is
approximately linear – which is done efficiently with
a graph. Use GRPH (F1) and then SET (F6) to set up
a graph of log P by t. Set the parameters as shown
opposite.

Ensure the view window is set as shown opposite,
you need to consult your data to ensure it is set
appropriately.

Pressing EXIT, GRPH (F1)and then GPH1(F1)
gives us a plot of log P by t.
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A least squares line can now be fitted to the data. Press X (F1) to achieve this. The
results are displayed and then using DRAW (F6) results in the line of best fit being
displayed on the graph.

                   

Given that the graph drawn is of log P vs t, the slope and intercept values of the least
squares line give us the following:

Log10 P ≈ -0.29743t + 1.9994

⇒ 10 
-0.29743t + 1.9994

 ≈ P

⇒ 10 
-0.29743t 

10 
 1.9994

 ≈ P

⇒ P ≈ 10 
-0.29743t 

10 
 1.9994

⇒ P ≈ 100 (0.504)
t

The 0.504 should be familiar.

Back to the Stenduser

Return to the Stenduser and see if you can apply your knowledge and conquer the
challenges

Discuss your thoughts with your colleagues and teacher.
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Closing comments for the teacher.

There are many questions to ponder when attacking this unit of work with students
this year. We will deal with some below.

Why an exponential model?
One could fit any type of model to the ‘diver’ data. Try a quadratic and you may be
convinced of its appropriateness for a given domain. Of course, the residuals that
result from the fitting of the least squares line should be taken into account, but that is
something for Stage 1 2002.

George Box is renowned as saying ‘All models are wrong, but some are useful’.

However, the whole world of theoretical modelling needs to be considered. Largely
the world of differential equations, it gives us some insight into what models are
appropriate for the physical situation we face. The mechanisms that control the system
need to be understood if this approach is used to build a model. It is out of the scope
of this course, but the students should be challenged to consider it. In the cases where
an exponential model is appropriate, the system must be such that the rate of change
of the quantity of interest must be able to be assumed to be proportional to the
quantity.

Exponential Functions
After having used the approach suggested in this booklet it is a small jump to the
notion of a continuous set of values that give rise to the exponential function. The
calculator offers a quick way to graph functions of this type to see how they appear
and the way they behave.

Growth and Decay Problems
The techniques offered in this booklet allow students a choice of method of solution
to these traditional problems. Again a balance is required when demanding the way
students approach the problems. The calculator acts as a great checking tool or as a
tool to aid in the solution.

Solving exponential equations (see also the PAC policy on solving equations -
attached)
The logarithmic approach to solving exponential equations will still need to be
covered. It is still unclear exactly how the Year 12 examination of 2002 will change,
but it is likely that it will be stipulated in some questions that algebraic solutions are
required.

Logarithm rules and a proficiency in their use will also still be important to cover.

Arithmetic and Geometric Series
The calculator offers a quick way to cope with many of the problems traditionally
done by students. A balance needs to be found between how students are expected to
approach problems. The teaching of the use of the calculator for these tasks is not a
long task.


