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Consider the rand function on your Classpad, which generates 10-digit random decimal values in the 

range 0 ≤ 𝐫𝐚𝐧𝐝( ) < 1.  

This can be input from the Catalog of available functions (or typed with the keyboard). Should you 

wish to access this from the catalog, turn on your keyboard then access the second set of keyboard 

options using the down arrow key. 

 

Above left is an example of the Catalog use to input the rand() command, and above right are a 

series of examples of the command being used. 

Sketch a histogram on the following axes illustrating what you think the distribution of values would 

look like were this command to be used 100 times: 

 

Compare your histogram with those of others around you. 
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A related command, randlist(n), can be used to generate a list of n such random decimal values, a 

screenshot of which is shown below to generate a list of 100 values:  

 

If we would like to generate histograms of our results, perhaps the easiest and most convenient 

method is to do so in Spreadsheet mode. 

Commands from Main can be input in spreadsheet cells, and indeed it can be easiest sometimes to 

copy a command from main and then paste it into a spreadsheet cell (the keyboard shortcut L= 

can be used to copy, and shortcut L𝑦 can be used to paste). 

 

For those familiar with spreadsheets in general, the Classpad 

spreadsheet operation will feel quite comfortable for you – cell 

function commands start with the customary = sign, and have 

similar format including ranges of values.  

The advantage with the calculator implementation is that 

Classpad functionality is available to you in cell commands, so a 

mixture of functions can be used. 

 

The function bar shows at the bottom, and beneath that a 

name box. 
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A command in one cell that is required to be replicated in 

adjacent cells can be copied via the Fill option residing under 

the Edit menu tab. 

The Fill Range option will take a copy of the currently selected 

cell, and fill it into the designated range of cells. In this case we 

want to fill 100 cells in the first column with random decimals.  

 

 

 

The result of our Fill directive is shown to the left. 
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Select the column of values by clicking on the column 

name tab above it, just as you would ordinarily in a 

spreadsheet. 

Under the Graph menu tab, select Histogram from the list 

of options. 

The Classpad will now split the screen, and display a 

histogram of the 100 values. 
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At any time the spreadsheet can be Recalculated using the 

appropriate option under the File tab as illustrated to the left. 

Note that the histogram will automatically adjust. 

 

Three differing versions are illustrated below, illustrating he 

randomness of the decimal numbers generated. 

 

 

 

 

 

 

 

 

In the final example at right, two important facets are 

shown: 

Firstly, the frequency of any interval (the height of the 

column) can be given by clicking on the column, after 

which the Name bar strip below will inform you of the 

column being graphed, the class interval, and the 

frequency – in the case to the right, there were 13 values 

in the range 0.4 ≤ 𝑥 ≤ 0.5 

Also note the possibility that a column can extend beyond the top of the window. 
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Try it now with 400 rolls – compare your histogram with 

that below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are witnessing samples of the given size from a uniform distribution 

i.e.  𝐫𝐚𝐧𝐝( )~𝑈(0,1) 
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Now consider the command 𝐫𝐚𝐧𝐝( ) × 𝟔 

 

What would a histogram of the command  𝐫𝐚𝐧𝐝( ) × 𝟔  look like? 

Experiment to confirm your suspicions, using the spreadsheet option. 

 

Your results should confirm that  𝐫𝐚𝐧𝐝(  ) × 𝟔 ~ 𝑈(0,6) 

 

Now consider the command 𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) × 𝟔) 

 (where the int function truncates its input value to provide just the integer portion) 

What would you predict its distribution to look like? 

 

Again, experiment to confirm your suspicions (or, perhaps, to correct them!) 

 

Your results should confirm that  𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) × 𝟔) ~ 𝑈(0,5), 𝑋 ∈ ℤ 

 

Finally consider the command 𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) × 𝟔) + 𝟏 

Experiment to confirm your suspicions (or, perhaps, to correct them once more!) 

 

Your results should confirm that 𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) × 𝟔) + 𝟏 ~ 𝑈(1,6), 𝑋 ∈ ℤ 



Simulation and Sampling Distributions 
 

D R A F T  –  0 9 / 1 0 / 2 0 1 5  P o t t s  B a k e r  I n s t i t u t e  P a g e  8 | 22 

 

The Fair Die Simulation 
 

We now have the means to simulate rolls of a fair die at our disposal. 

There is a command for generating just random integers, rand(1,6), but this is limiting in its 

applicability to what will follow so we wish to continue to use the manually created version. 

Let’s use our die simulation command from before in a 

spreadsheet. 

Create 120 rolls of a fair die, and create yourself a histogram 

of the results. 

 

Let us focus on how many 6’s were rolled – ‘Sixes are it!’. 

Get each person to record for all to see how many 6’s were rolled out of the total of 120 rolls – 

ensure each person gets a chance to write their value on the board:  i.e.  19, 17, 24, ……. 

Let 𝑋 = ‘The number of 6’s rolled in 120 rolls of a fair die” 

Our aim is to complete the table below: 

𝑋 0 … … 20 … … 120 

𝑃(𝑋 = 𝑥) ≈ 0 … … ? … … ≈ 0 
 

An alternate way to view this, rather than ‘How many 6’s out of 120 rolls’ is to consider the 

proportion of the total number of rolls, so that ultimately our analysis can be independent of the 

number of times the trial is repeated: 

 

Let 𝑃̂ = the proportion of 6′s rolled in 120 rolls 

(note that we call this ‘P Hat’ when reading it aloud) 

So 𝑃̂ =
𝑋

120
 in this case. 

We add a further row to our table: 

𝑋 0 … … 20 … … 120 

𝑃̂ 0 … … 1
6⁄  … … 1 

𝑃(𝑃̂ = 𝑝̂) ≈ 0 … … ? … … ≈ 0 
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The Bernoulli Simulation 
 

Now consider the result when the command 𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) + 𝟎. 𝟖) is entered. 

What will happen? 

Write down what you think will happen – without fear of being wrong! 

Now try it a few times with your Classpad, as displayed in the following screenshot: 

 

 

Logically, if  𝐫𝐚𝐧𝐝( )~ 𝑈(0 , 1) 

Then 𝐫𝐚𝐧𝐝( ) + 𝟎. 𝟖 ~ 𝑈(0.8 , 1.8) 

And 𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) + 𝟎. 𝟖) ~    

  

𝑋 0 1 

𝑃(𝑥 = 𝑋) 0.2 0.8 
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And 𝐢𝐧𝐭(𝐫𝐚𝐧𝐝( ) + 𝐤) ~    

 for 0 ≤ 𝐤 ≤ 1 

 

Can you imagine a real context in which this type of command might be used to simulate (or model) 

the behaviour of the system? Write down an example which occurs to you, and share it with those 

around you. 

 

Clearly examples are prolific – think of examples which are unusual probabilities – such as the 

probability of a condom failing being 12% (!). That could be simulated with a 𝐤 value of 0.88, so the 

command returns: 

 0 (Broken condom) 12% of time on average 

 1 (Non-broken condom) 88% of time on average 

We do tend to think of 1 being success in such probability trials. 

 

Armed with these commands, and an ability to use a spreadsheet to repeat the command many 

times, the ability to simulate probability scenarios on your Classpad becomes quite powerful. 

  

𝑋 0 1 

𝑃(𝑥 = 𝑋) 1-k k 
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The Blue Smartie Activity - Proportions 
 

 

 

 

Consider a container in which 10 smarties have 

been placed, such as in the picture at right, where 

6 of the smarties are blue. 

 

 

 

Pick one smartie out of the container at random, record its colour, and then return it. 

Repeat this 10 times – so that we can investigate the number of times a blue smartie was drawn out 

of 10 draws. 

Let 𝑋 = Number of blue in 10 draws 

and, let 𝑃̂ = the proportion of the 10 draws which were blue 

So 𝑃̂ =
𝑋

10
 

 

𝑋 0 1 2 3 4 5 6 7 8 9 10 

𝑃̂ 0 
1

10
 

2

10
 

3

10
 

4

10
 

5

10
 

6

10
 

7

10
 

8

10
 

9

10
 1 

𝑃(𝑃̂ = 𝑝̂)            
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We will use the Classpad to simulate this scenario, taking samples of 10 draws and recording them to 

help us to better understand the probabilities for the lower part of the table. To do so we will need 

10 columns of values. Because we are considering a 1 to be the random selection of a blue smartie, 

the sum of these 10 vales will give us the number of blue smarties out of the 10 random draws (with 

replacement). 

From this simulation we can obtain experimental probabilities for each outcome (or Event) in our 

sampling distribution. Later in the session this row will be completed using theoretical probability. 

 

The Fill command above creates an array of size 

 40 × 10 alongside which a new column, seen below, 

has been added (and filled down) to sum the 10 

values in the row to the left. 
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Select the extra column by clicking the heading on top and draw yourself a histogram. 
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We can optionally calculate the One-Variable statistics for our samples.  

 

If we conduct one trial (i.e. select one smartie from the container and check whether it is Blue or 

not) then it would be termed a Bernoulli Trial (𝑛 = 1, where n is the number of trials conducted). 

If 𝑛 > 1 then we are conducting a Binomial Trial. In our example above, 𝑛 = 10 as we are repeating 

the trial 10 times (groups of 10 draws with replacement). 

Using Theoretical probability, the probability distribution of X would be a Binomial Distribution, 

written as 

𝑋~𝐵(10,
6

10
) 

The Binomial Theorem states that the probability of 𝑟 successes out of a total of 𝑛 binomial trials, 

where the fixed probability of success in each trial is 𝑝 is given by 

𝑃(𝑋 = 𝑟) = (
𝑛

𝑟
) × 𝑝𝑟 × (1 − 𝑝)𝑛−𝑟 

So in our case the theoretical probability of getting 3 blues out of a total of 10 draws, where the 

probability of a blue in any draw is 
6

10
 would be 

𝑃(𝑋 = 3) = (
10

3
) × (

6

10
)

3

× (
4

10
)

7

 

Which, whilst possible to calculate manually, your Classpad can calculate directly using the 

command: 
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Note that in the spreadsheet example shown at left, there 

were 2 of the 40 instances where 3 blues were drawn, 

equating to an experimental probability of 0.05 (not far from 

the theoretical value of 0.0425 calculated above. 

 

 

 

 

 

 

 

 

 

We can create a table of values of all theoretical probability 

values corresponding to each of the possible values for X, 

using table mode with integer values of x from 0 to 10:   
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And then plot these values into a scatterplot, which is termed a probability spike graph. 

Note the similarity of the curve produced to a Normal 

Distribution. In fact, we can approximate our binomial 

probability distribution curve by a normal distribution curve, 

such that  

𝑋~𝐵(𝑛, 𝑝) ≈ 𝑁( 𝜇(𝑋) = 𝑛 × 𝑝 , 𝜎(𝑋) = √𝑛 × 𝑝 × (1 − 𝑝) ) 

So that the mean of the sampling distribution will be  

𝜇(𝑋) = 𝑛 × 𝑝 

And the standard deviation of the sampling distribution will be 

 𝜎(𝑋) = √𝑛 × 𝑝 × (1 − 𝑝) 

 

 

 

 

 

For our example, with 𝑛 = 10 and 𝑝 =
6

10
 we have 

𝜇(𝑋) = 𝑛 × 𝑝 

                = 10 ×
6

10
 

    = 6 

And 

𝜎(𝑋) = √𝑛 × 𝑝 × (1 − 𝑝) 

= √10 ×
6

10
×

4

10
 

= √
12

5
 

≈ 1.549 

Find the mean and standard deviation of your own sample population, and compare with these 

values. 
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Here are the sample statistics for our current sample of 𝑋 values, with a mean quite near to 6, as we 

would expect, and a shape reminiscent of a Normal Distribution (although clearly not exact): 

 

We now repeat our earlier technique of the creation of associated  𝑃̂ values, being  𝑃̂ =
𝑋

10
 in this 

case. 

 

These 𝑃̂ values will also be approximately Normally 

Distributed, with 

𝜇(𝑃̂) = 𝑝 

(i.e. the mean of our 𝑃̂ distribution will be the original 

theoretical probability 𝑝, given that 
6

10
 of the smarties 

in the container were blue).  

And 

𝜎(𝑃̂) = √
𝑝 × (1 − 𝑝)

𝑛
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The statistics for our 𝑃̂ values from our spreadsheet 

are illustrated alongside, to confirm our findings 

above. 
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Sampling for Unknown Population Proportions 
 

A more realistic scenario is that the population proportion is 

unknown, as might be the case were we to do pondering the 

proportion of blue Smarties in the population of all Smarties 

produced. 

The 250g bag shown alongside contained a total of 232 

smarties, of which 28 were blue. 

For this sample, 

𝑝̂ =
# 𝑏𝑙𝑢𝑒

# 𝑠𝑚𝑎𝑟𝑡𝑖𝑒𝑠
=

28

232
= 0.12 

This 𝑝̂ is one value out of a population of all possible values in the 𝑃̂ population – the proportions of 

blue smarties in every 250g bag produced. 

So what do we think the actual proportion of blue smarties (𝑝) is? 

If we recall and consider that the population of 𝑃̂ values is approximately normally distributed, 

then clearly what we have here is one value at random drawn from that population. 

Imagine that we have a normal distribution curve sitting above a number line upon which our 𝑝̂ 

values are plotted. 

Then what we must consider is that this 𝑝̂ could be anywhere in the normal distribution of values, 

but if we consider the ‘worst case scenarios’ of it being in each of the tails (left and right) then we 

are presented with the following mental picture: 

 

 

 

 

 

 

  

 

 

 

 

 

  
0.12 

𝑝̂ 
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The shading within each distribution curve illustrated is the central 95% of values underneath the 

curve of the 𝑃̂ population, which we know to be approximately Normally Distributed. The central 

95% will be contained within a band of values stretching out from the mean by a multiple of 1.96 

times of the standard deviation (i.e. (𝑃̂) ± 1.96 × 𝜎(𝑃̂) ).  

Using this as a means to understanding where the actual 𝑝 lies, we come to see that if our 𝑝̂ is within 

the central 95% of values under the actual curve centred around 𝑝, then we can be 95% confident 

that the range of values within which is lies is the width of each tail either side of our 𝑝̂ value. 

This allows us to construct from our 𝑝̂ value an interval within which we are 95% confident that the 

value of 𝑝 lies: 

𝑝̂ − 1.96 ×  𝜎(𝑃̂) ≤ 𝜇(𝑃̂) ≤ 𝑝̂ + 1.96 × 𝜎(𝑃̂) 

 

We can now substitute our other known values, being that  

𝜇(𝑃̂) = 𝑝 

And 

𝜎(𝑃̂) = √
𝑝 × (1 − 𝑝)

𝑛
 

Since that actual 𝑝 value is unknown we use our 𝑝̂ value in its place. 

𝑝̂ − 1.96 × √
𝑝̂ × (1 − 𝑝̂)

𝑛
≤  𝑝 ≤ 𝑝̂ + 1.96 × √

𝑝̂ × (1 − 𝑝̂)

𝑛
 

 

We are now in a position to construct for ourselves a 95% Confidence Interval for the proportion of 

blue smarties in the population of all smarties produced, based upon our sample of size 232 which it 

seems reasonable to assume was randomly chosen. 

28

232
− 1.96 ×  

√
28

232 × (1 −
28

232)

232
≤  𝑝 ≤

28

232
+ 1.96 ×

√
28

232 × (1 −
28

232)

232
 

This yields us an interval within which we are 95% confident that the population proportion of blue 

smarties lies: 

0.079 ≤ 𝑝 ≤ 0.163 

Correct to 3 decimal places. 
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Confidence Interval Calculations on the Classpad. 
 

Such Confidence Interval calculations are not recommended to be manually entered into Main on a 

Classpad, although for completeness they have been done below. 

The recommended method is to use the Interval wizard provided within the Statistics application: 

 

Select Interval, and from the next set of options choose the ‘One Proportion Z-Interval’ from the 

drop-down list. 

You can optionally turn on help within the wizard, which will provide a short description of the 

contents of each field. For example, the CI percentage must be input as a decimal between 0 and 1. 
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And we are presented with the boundary values for our confidence interval: 

 

 

For completeness, the manual calculation is shown also: 

 

 

 


